The Stacks Project


Tag 0BEL

32.44. Numerical intersections

In this section we play around with the Euler characteristic of coherent sheaves on proper schemes to obtain numerical intersection numbers for invertible modules. Our main tool will be the following lemma.

Lemma 32.44.1. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be invertible $\mathcal{O}_X$-modules. The map $$ (n_1, \ldots, n_r) \longmapsto \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) $$ is a numerical polynomial in $n_1, \ldots, n_r$ of total degree at most the dimension of the support of $\mathcal{F}$.

Proof. We prove this by induction on $\dim(\text{Supp}(\mathcal{F}))$. If this number is zero, then the function is constant with value $\dim_k \Gamma(X, \mathcal{F})$ by Lemma 32.32.3. Assume $\dim(\text{Supp}(\mathcal{F})) > 0$.

If $\mathcal{F}$ has embedded associated points, then we can consider the short exact sequence $0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0$ constructed in Divisors, Lemma 30.4.6. Since the dimension of the support of $\mathcal{K}$ is strictly less, the result holds for $\mathcal{K}$ by induction hypothesis and with strictly smaller total degree. By additivity of the Euler characteristic (Lemma 32.32.2) it suffices to prove the result for $\mathcal{F}'$. Thus we may assume $\mathcal{F}$ does not have embedded associated points.

If $i : Z \to X$ is a closed immersion and $\mathcal{F} = i_*\mathcal{G}$, then we see that the result for $X$, $\mathcal{F}$, $\mathcal{L}_1, \ldots, \mathcal{L}_r$ is equivalent to the result for $Z$, $\mathcal{G}$, $i^*\mathcal{L}_1, \ldots, i^*\mathcal{L}_r$ (since the cohomologies agree, see Cohomology of Schemes, Lemma 29.2.4). Applying Divisors, Lemma 30.4.7 we may assume that $X$ has no embedded components and $X = \text{Supp}(\mathcal{F})$.

Pick a regular meromorphic section $s$ of $\mathcal{L}_1$, see Divisors, Lemma 30.23.13. Let $\mathcal{I} \subset \mathcal{O}_X$ be the ideal of denominators of $s$ and consider the maps $$ \mathcal{I}\mathcal{F} \to \mathcal{F},\quad \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes \mathcal{L}_1 $$ of Divisors, Lemma 30.23.16. These are injective and have cokernels $\mathcal{Q}$, $\mathcal{Q}'$ supported on nowhere dense closed subschemes of $X = \text{Supp}(\mathcal{F})$. Tensoring with the invertible module $\mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_1^{\otimes n_1}$ is exact, hence using additivity again we see that \begin{align*} &\chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) - \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1 + 1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) \\ & = \chi(\mathcal{Q} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) - \chi(\mathcal{Q}' \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) \end{align*} Thus we see that the function $P(n_1, \ldots, n_r)$ of the lemma has the property that $$ P(n_1 + 1, n_2, \ldots, n_r) - P(n_1, \ldots, n_r) $$ is a numerical polynomial of total degree $<$ the dimension of the support of $\mathcal{F}$. Of course by symmetry the same thing is true for $$ P(n_1, \ldots, n_{i - 1}, n_i + 1, n_{i + 1}, \ldots, n_r) - P(n_1, \ldots, n_r) $$ for any $i \in \{1, \ldots, r\}$. A simple arithmetic argument shows that $P$ is a numerical polynomial of total degree at most $\dim(\text{Supp}(\mathcal{F}))$. $\square$

The following lemma roughly shows that the leading coefficient only depends on the length of the coherent module in the generic points of its support.

Lemma 32.44.2. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Let $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be invertible $\mathcal{O}_X$-modules. Let $d = \dim(\text{Supp}(\mathcal{F}))$. Let $Z_i \subset X$ be the irreducible components of $\text{Supp}(\mathcal{F})$ of dimension $d$. Let $\xi_i \in Z_i$ be the generic point and set $m_i = \text{length}_{\mathcal{O}_{X, \xi_i}}(\mathcal{F}_{\xi_i})$. Then $$ \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) - \sum\nolimits_i m_i~\chi(Z_i, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}|_{Z_i}) $$ is a numerical polynomial in $n_1, \ldots, n_r$ of total degree $< d$.

Proof. Consider pairs $(\xi , Z)$ where $Z \subset X$ is an integral closed subscheme of dimension $d$ and $\xi$ is its generic point. Then the finite $\mathcal{O}_{X, \xi}$-module $\mathcal{F}_\xi$ has support contained in $\{\xi\}$ hence the length $m_Z = \text{length}_{\mathcal{O}_{X, \xi}}(\mathcal{F}_\xi)$ is finite (Algebra, Lemma 10.61.3) and zero unless $Z = Z_i$ for some $i$. Thus the expression of the lemma can be written as $$ E(\mathcal{F}) = \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) - \sum\nolimits m_Z~\chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}|_Z) $$ where the sum is over integral closed subschemes $Z \subset X$ of dimension $d$. The assignment $\mathcal{F} \mapsto E(\mathcal{F})$ is additive in short exact sequences $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$ of coherent $\mathcal{O}_X$-modules whose support has dimension $\leq d$. This follows from additivity of Euler characteristics (Lemma 32.32.2) and additivity of lengths (Algebra, Lemma 10.51.3). Let us apply Cohomology of Schemes, Lemma 29.12.3 to find a filtration $$ 0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \ldots \subset \mathcal{F}_m = \mathcal{F} $$ by coherent subsheaves such that for each $j = 1, \ldots, m$ there exists an integral closed subscheme $V_j \subset X$ and a sheaf of ideals $\mathcal{I}_j \subset \mathcal{O}_{V_j}$ such that $$ \mathcal{F}_j/\mathcal{F}_{j - 1} \cong (V_j \to X)_* \mathcal{I}_j $$ By the additivity we remarked upon above it suffices to prove the result for each of the subquotients $\mathcal{F}_j/\mathcal{F}_{j - 1}$. Thus it suffices to prove the result when $\mathcal{F} = (V \to X)_*\mathcal{I}$ where $V \subset X$ is an integral closed subscheme of dimension $\leq d$. If $\dim(V) < d$ and more generally for $\mathcal{F}$ whose support has dimension $< d$, then the first term in $E(\mathcal{F})$ has total degree $< d$ by Lemma 32.44.1 and the second term is zero. If $\dim(V) = d$, then we can use the short exact sequence $$ 0 \to (V \to X)_*\mathcal{I} \to (V \to X)_*\mathcal{O}_V \to (V \to X)_*(\mathcal{O}_V/\mathcal{I}) \to 0 $$ The result holds for the middle sheaf because the only $Z$ occurring in the sum is $Z = V$ with $m_Z = 1$ and because $$ H^i(X, ((V \to X)_*\mathcal{O}_V) \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) = H^i(V, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}|_V) $$ by the projection formula (Cohomology, Section 20.45) and Cohomology of Schemes, Lemma 29.2.4; so in this case we actually have $E(\mathcal{F}) = 0$. The result holds for the sheaf on the right because its support has dimension $< d$. Thus the result holds for the sheaf on the left and the lemma is proved. $\square$

Definition 32.44.3. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $i : Z \to X$ be a closed subscheme of dimension $d$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be invertible $\mathcal{O}_X$-modules. We define the intersection number $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$ as the coefficient of $n_1 \ldots n_d$ in the numerical polynomial $$ \chi(X, i_*\mathcal{O}_Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}) = \chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}|_Z) $$ In the special case that $\mathcal{L}_1 = \ldots = \mathcal{L}_d = \mathcal{L}$ we write $(\mathcal{L}^d \cdot Z)$.

The displayed equality in the definition follows from the projection formula (Cohomology, Section 20.45) and Cohomology of Schemes, Lemma 29.2.4. We prove a few lemmas for these intersection numbers.

Lemma 32.44.4. In the situation of Definition 32.44.3 the intersection number $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$ is an integer.

Proof. Any numerical polynomial of degree $e$ in $n_1, \ldots, n_d$ can be written uniquely as a $\mathbf{Z}$-linear combination of the functions ${n_1 \choose k_1}{n_2 \choose k_2} \ldots {n_d \choose k_d}$ with $k_1 + \ldots + k_d \leq e$. Apply this with $e = d$. Left as an exercise. $\square$

Lemma 32.44.5. In the situation of Definition 32.44.3 the intersection number $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$ is additive: if $\mathcal{L}_i = \mathcal{L}_i' \otimes \mathcal{L}_i''$, then we have $$ (\mathcal{L}_1 \cdots \mathcal{L}_i \cdots \mathcal{L}_d \cdot Z) = (\mathcal{L}_1 \cdots \mathcal{L}_i' \cdots \mathcal{L}_d \cdot Z) + (\mathcal{L}_1 \cdots \mathcal{L}_i'' \cdots \mathcal{L}_d \cdot Z) $$

Proof. This is true because by Lemma 32.44.1 the function $$ (n_1, \ldots, n_{i - 1}, n_i', n_i'', n_{i + 1}, \ldots, n_d) \mapsto \chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes (\mathcal{L}_i')^{\otimes n_i'} \otimes (\mathcal{L}_i'')^{\otimes n_i''} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}|_Z) $$ is a numerical polynomial of total degree at most $d$ in $d + 1$ variables. $\square$

Lemma 32.44.6. In the situation of Definition 32.44.3 let $Z_i \subset Z$ be the irreducible components of dimension $d$. Let $m_i = \text{length}_{\mathcal{O}_{X, \xi_i}}(\mathcal{O}_{Z, \xi_i})$ where $\xi_i \in Z_i$ is the generic point. Then $$ (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z) = \sum m_i(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z_i) $$

Proof. Immediate from Lemma 32.44.2 and the definitions. $\square$

Lemma 32.44.7. Let $k$ be a field. Let $f : Y \to X$ be a morphism of proper schemes over $k$. Let $Z \subset Y$ be an integral closed subscheme of dimension $d$ and let $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be invertible $\mathcal{O}_X$-modules. Then $$ (f^*\mathcal{L}_1 \cdots f^*\mathcal{L}_d \cdot Z) = \deg(f|_Z : Z \to f(Z)) (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot f(Z)) $$ where $\deg(Z \to f(Z))$ is as in Morphisms, Definition 28.48.8 or $0$ if $\dim(f(Z)) < d$.

Proof. The left hand side is computed using the coefficient of $n_1 \ldots n_d$ in the function $$ \chi(Y, \mathcal{O}_Z \otimes f^*\mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes f^*\mathcal{L}_d^{\otimes n_d}) = \sum (-1)^i \chi(X, R^if_*\mathcal{O}_Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}) $$ The equality follows from Lemma 32.32.5 and the projection formula (Cohomology, Lemma 20.45.2). If $f(Z)$ has dimension $< d$, then the right hand side is a polynomial of total degree $<d$ by Lemma 32.44.1 and the result is true. Assume $\dim(f(Z)) = d$. Let $\xi \in f(Z)$ be the generic point. By dimension theory (see Lemmas 32.20.3 and 32.20.4) the generic point of $Z$ is the unique point of $Z$ mapping to $\xi$. Then $f : Z \to f(Z)$ is finite over a nonempty open of $f(Z)$, see Morphisms, Lemma 28.48.1. Thus $\deg(f : Z \to f(Z))$ is defined and in fact it is equal to the length of the stalk of $f_*\mathcal{O}_Z$ at $\xi$ over $\mathcal{O}_{X, \xi}$. Moreover, the stalk of $R^if_*\mathcal{O}_X$ at $\xi$ is zero for $i > 0$ because we just saw that $f|_Z$ is finite in a neighbourhood of $\xi$ (so that Cohomology of Schemes, Lemma 29.9.9 gives the vanishing). Thus the terms $\chi(X, R^if_*\mathcal{O}_Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d})$ with $i > 0$ have total degree $< d$ and $$ \chi(X, f_*\mathcal{O}_Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}) = \deg(f : Z \to f(Z)) \chi(f(Z), \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}|_{f(Z)}) $$ modulo a polynomial of total degree $< d$ by Lemma 32.44.2. The desired result follows. $\square$

Lemma 32.44.8. Let $k$ be a field. Let $X$ be proper over $k$. Let $Z \subset X$ be a closed subscheme of dimension $d$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be invertible $\mathcal{O}_X$-modules. Assume there exists an effective Cartier divisor $D \subset Z$ such that $\mathcal{L}_1|_Z \cong \mathcal{O}_Z(D)$. Then $$ (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z) = (\mathcal{L}_2 \cdots \mathcal{L}_d \cdot D) $$

Proof. We may replace $X$ by $Z$ and $\mathcal{L}_i$ by $\mathcal{L}_i|_Z$. Thus we may assume $X = Z$ and $\mathcal{L}_1 = \mathcal{O}_X(D)$. Then $\mathcal{L}_1^{-1}$ is the ideal sheaf of $D$ and we can consider the short exact sequence $$ 0 \to \mathcal{L}_1^{\otimes -1} \to \mathcal{O}_X \to \mathcal{O}_D \to 0 $$ Set $P(n_1, \ldots, n_d) = \chi(X, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d})$ and $Q(n_1, \ldots, n_d) = \chi(D, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_d^{\otimes n_d}|_D)$. We conclude from additivity that $$ P(n_1, \ldots, n_d) - P(n_1 - 1, n_2, \ldots, n_d) = Q(n_1, \ldots, n_d) $$ Because the total degree of $P$ is at most $d$, we see that the coefficient of $n_1 \ldots n_d$ in $P$ is equal to the coefficient of $n_2 \ldots n_d$ in $Q$. $\square$

Lemma 32.44.9. Let $k$ be a field. Let $X$ be proper over $k$. Let $Z \subset X$ be a closed subscheme of dimension $d$. If $\mathcal{L}_1, \ldots, \mathcal{L}_d$ are ample, then $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$ is positive.

Proof. We will prove this by induction on $d$. The case $d = 0$ follows from Lemma 32.32.3. Assume $d > 0$. By Lemma 32.44.6 we may assume that $Z$ is an integral closed subscheme. In fact, we may replace $X$ by $Z$ and $\mathcal{L}_i$ by $\mathcal{L}_i|_Z$ to reduce to the case $Z = X$ is a proper variety of dimension $d$. By Lemma 32.44.5 we may replace $\mathcal{L}_1$ by a positive tensor power. Thus we may assume there exists a nonzero section $s \in \Gamma(X, \mathcal{L}_1)$ such that $X_s$ is affine (here we use the definition of ample invertible sheaf, see Properties, Definition 27.26.1). Observe that $X$ is not affine because proper and affine implies finite (Morphisms, Lemma 28.42.11) which contradicts $d > 0$. It follows that $s$ has a nonempty vanishing scheme $Z(s) \subset X$. Since $X$ is a variety, $s$ is a regular section of $\mathcal{L}_1$, so $Z(s)$ is an effective Cartier divisor, thus $Z(s)$ has codimension $1$ in $X$, and hence $Z(s)$ has dimension $d - 1$ (here we use material from Divisors, Sections 30.13 and 30.15 and from dimension theory as in Lemma 32.20.3). By Lemma 32.44.8 we have $$ (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot X) = (\mathcal{L}_2 \cdots \mathcal{L}_d \cdot Z(s)) $$ By induction the right hand side is positive and the proof is complete. $\square$

Definition 32.44.10. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module. For any closed subscheme the degree of $Z$ with respect to $\mathcal{L}$, denoted $\deg_\mathcal{L}(Z)$, is the the intersection number $(\mathcal{L}^d \cdot Z)$ where $d = \dim(Z)$.

By Lemma 32.44.9 the degree of a subscheme is always a positive integer. We note that $\deg_\mathcal{L}(Z) = d$ if and only if $$ \chi(Z, \mathcal{L}^{\otimes n}|_Z) = \frac{d}{\dim(Z)!} n^{\dim(Z)} + l.o.t $$ as can be seen using that $$ (n_1 + \ldots + n_{\dim(Z)})^{\dim(Z)} = \dim(Z)!~n_1 \ldots n_{\dim(Z)} + \text{other terms} $$

Lemma 32.44.11. Let $k$ be a field. Let $f : Y \to X$ be a finite dominant morphism of proper varieties over $k$. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module. Then $$ \deg_{f^*\mathcal{L}}(Y) = \deg(f) \deg_\mathcal{L}(X) $$ where $\deg(f)$ is as in Morphisms, Definition 28.48.8.

Proof. The statement makes sense because $f^*\mathcal{L}$ is ample by Morphisms, Lemma 28.35.7. Having said this the result is a special case of Lemma 32.44.7. $\square$

Finally we relate the intersection number with a curve to the notion of degrees of invertible modules on curves introduced in Section 32.43.

Lemma 32.44.12. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $Z \subset X$ be a closed subscheme of dimension $\leq 1$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module. Then $$ (\mathcal{L} \cdot Z) = \deg(\mathcal{L}|_Z) $$ where $\deg(\mathcal{L}|_Z)$ is as in Definition 32.43.1. If $\mathcal{L}$ is ample, then $\deg_\mathcal{L}(Z) = \deg(\mathcal{L}|_Z)$.

Proof. This follows from the fact that the function $n \mapsto \chi(Z, \mathcal{L}|_Z^{\otimes n})$ has degree $1$ and hence the leading coefficient is the difference of consecutive values. $\square$

Proposition 32.44.13 (Asymptotic Riemann-Roch). Let $k$ be a field. Let $X$ be a proper scheme over $k$ of dimension $d$. Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module. Then $$ \dim_k \Gamma(X, \mathcal{L}^{\otimes n}) \sim c n^d + l.o.t. $$ where $c = \deg_\mathcal{L}(X)/d!$ is a positive constant.

Proof. This follows from the definitions, Lemma 32.44.9, and the vanishing of higher cohomology in Cohomology of Schemes, Lemma 29.17.1. $\square$

    The code snippet corresponding to this tag is a part of the file varieties.tex and is located in lines 9630–10152 (see updates for more information).

    \section{Numerical intersections}
    \label{section-num}
    
    \noindent
    In this section we play around with the Euler characteristic of
    coherent sheaves on proper schemes to obtain numerical intersection
    numbers for invertible modules. Our main tool will be the following
    lemma.
    
    \begin{lemma}
    \label{lemma-numerical-polynomial-from-euler}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{F}$
    be a coherent $\mathcal{O}_X$-module. Let
    $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be invertible $\mathcal{O}_X$-modules.
    The map
    $$
    (n_1, \ldots, n_r) \longmapsto
    \chi(X, \mathcal{F} \otimes
    \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r})
    $$
    is a numerical polynomial in $n_1, \ldots, n_r$ of total degree at
    most the dimension of the support of $\mathcal{F}$.
    \end{lemma}
    
    \begin{proof}
    We prove this by induction on $\dim(\text{Supp}(\mathcal{F}))$.
    If this number is zero, then the function is constant with value
    $\dim_k \Gamma(X, \mathcal{F})$ by Lemma \ref{lemma-chi-tensor-finite}.
    Assume $\dim(\text{Supp}(\mathcal{F})) > 0$.
    
    \medskip\noindent
    If $\mathcal{F}$ has embedded associated points, then we can consider
    the short exact sequence
    $0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0$
    constructed in Divisors, Lemma \ref{divisors-lemma-remove-embedded-points}.
    Since the dimension of the support of $\mathcal{K}$ is strictly less,
    the result holds for $\mathcal{K}$ by induction hypothesis and with
    strictly smaller total degree.
    By additivity of the Euler characteristic
    (Lemma \ref{lemma-euler-characteristic-additive})
    it suffices to prove the result for $\mathcal{F}'$. Thus we may assume
    $\mathcal{F}$ does not have embedded associated points.
    
    \medskip\noindent
    If $i : Z \to X$ is a closed immersion and $\mathcal{F} = i_*\mathcal{G}$,
    then we see that the result for $X$, $\mathcal{F}$,
    $\mathcal{L}_1, \ldots, \mathcal{L}_r$ is equivalent to the result
    for $Z$, $\mathcal{G}$, $i^*\mathcal{L}_1, \ldots, i^*\mathcal{L}_r$
    (since the cohomologies agree, see
    Cohomology of Schemes, Lemma \ref{coherent-lemma-relative-affine-cohomology}).
    Applying Divisors, Lemma \ref{divisors-lemma-no-embedded-points-endos}
    we may assume that $X$ has no embedded components and
    $X = \text{Supp}(\mathcal{F})$.
    
    \medskip\noindent
    Pick a regular meromorphic section $s$ of $\mathcal{L}_1$, see
    Divisors, Lemma \ref{divisors-lemma-regular-meromorphic-section-exists}.
    Let $\mathcal{I} \subset \mathcal{O}_X$ be the ideal of
    denominators of $s$ and consider the maps
    $$
    \mathcal{I}\mathcal{F} \to \mathcal{F},\quad
    \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes \mathcal{L}_1
    $$
    of Divisors, Lemma \ref{divisors-lemma-make-maps-regular-section}.
    These are injective and have cokernels $\mathcal{Q}$, $\mathcal{Q}'$
    supported on nowhere dense closed subschemes of $X = \text{Supp}(\mathcal{F})$.
    Tensoring with the invertible module
    $\mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_1^{\otimes n_1}$
    is exact, hence using additivity again
    we see that
    \begin{align*}
    &\chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}) -
    \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1 + 1}
    \otimes \ldots \otimes \mathcal{L}_r^{\otimes n_r}) \\
    & =
    \chi(\mathcal{Q} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}) -
    \chi(\mathcal{Q}' \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r})
    \end{align*}
    Thus we see that the function $P(n_1, \ldots, n_r)$ of the lemma has
    the property that
    $$
    P(n_1 + 1, n_2, \ldots, n_r) - P(n_1, \ldots, n_r)
    $$
    is a numerical polynomial of total degree $<$ the dimension
    of the support of $\mathcal{F}$. Of course by symmetry the same
    thing is true for
    $$
    P(n_1, \ldots, n_{i - 1}, n_i + 1, n_{i + 1}, \ldots, n_r)
    - P(n_1, \ldots, n_r)
    $$
    for any $i \in \{1, \ldots, r\}$. A simple arithmetic argument shows
    that $P$ is a numerical polynomial of total degree at most
    $\dim(\text{Supp}(\mathcal{F}))$.
    \end{proof}
    
    \noindent
    The following lemma roughly shows that the leading coefficient only depends
    on the length of the coherent module in the generic points of its
    support.
    
    \begin{lemma}
    \label{lemma-numerical-polynomial-leading-term}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let
    $\mathcal{F}$ be a coherent $\mathcal{O}_X$-module. Let
    $\mathcal{L}_1, \ldots, \mathcal{L}_r$ be invertible $\mathcal{O}_X$-modules.
    Let $d = \dim(\text{Supp}(\mathcal{F}))$.
    Let $Z_i \subset X$ be the irreducible components
    of $\text{Supp}(\mathcal{F})$ of dimension $d$. Let $\xi_i \in Z_i$
    be the generic point and set
    $m_i = \text{length}_{\mathcal{O}_{X, \xi_i}}(\mathcal{F}_{\xi_i})$.
    Then
    $$
    \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}) -
    \sum\nolimits_i
    m_i\ \chi(Z_i, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}|_{Z_i})
    $$
    is a numerical polynomial in $n_1, \ldots, n_r$ of total degree $< d$.
    \end{lemma}
    
    \begin{proof}
    Consider pairs $(\xi , Z)$ where $Z \subset X$ is an integral
    closed subscheme of dimension $d$ and $\xi$ is its generic point.
    Then the finite $\mathcal{O}_{X, \xi}$-module $\mathcal{F}_\xi$
    has support contained in $\{\xi\}$ hence the length
    $m_Z = \text{length}_{\mathcal{O}_{X, \xi}}(\mathcal{F}_\xi)$
    is finite (Algebra, Lemma \ref{algebra-lemma-support-point})
    and zero unless $Z = Z_i$ for some $i$. Thus the expression
    of the lemma can be written as
    $$
    E(\mathcal{F}) =
    \chi(X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}) -
    \sum\nolimits
    m_Z\ \chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}|_Z)
    $$
    where the sum is over integral closed subschemes $Z \subset X$
    of dimension $d$. The assignment $\mathcal{F} \mapsto E(\mathcal{F})$
    is additive in short exact sequences
    $0 \to \mathcal{F} \to \mathcal{F}' \to \mathcal{F}'' \to 0$
    of coherent $\mathcal{O}_X$-modules whose support has dimension
    $\leq d$. This follows from additivity of Euler characteristics
    (Lemma \ref{lemma-euler-characteristic-additive})
    and additivity of lengths
    (Algebra, Lemma \ref{algebra-lemma-length-additive}).
    Let us apply Cohomology of Schemes, Lemma \ref{coherent-lemma-coherent-filter}
    to find a filtration
    $$
    0 = \mathcal{F}_0 \subset \mathcal{F}_1 \subset
    \ldots \subset \mathcal{F}_m = \mathcal{F}
    $$
    by coherent subsheaves such that for each $j = 1, \ldots, m$
    there exists an integral closed subscheme $V_j \subset X$
    and a sheaf of ideals $\mathcal{I}_j \subset \mathcal{O}_{V_j}$
    such that
    $$
    \mathcal{F}_j/\mathcal{F}_{j - 1}
    \cong (V_j \to X)_* \mathcal{I}_j
    $$
    By the additivity we remarked upon above it suffices to
    prove the result for each of the subquotients
    $\mathcal{F}_j/\mathcal{F}_{j - 1}$. Thus it suffices to prove
    the result when $\mathcal{F} = (V \to X)_*\mathcal{I}$ where
    $V \subset X$ is an integral closed subscheme of dimension $\leq d$.
    If $\dim(V) < d$ and more generally for $\mathcal{F}$
    whose support has dimension $< d$, then the first term
    in $E(\mathcal{F})$ has total degree $< d$ by
    Lemma \ref{lemma-numerical-polynomial-from-euler}
    and the second term is zero. If $\dim(V) = d$, then we can use the
    short exact sequence
    $$
    0 \to (V \to X)_*\mathcal{I} \to (V \to X)_*\mathcal{O}_V
    \to (V \to X)_*(\mathcal{O}_V/\mathcal{I}) \to 0
    $$
    The result holds for the middle sheaf because
    the only $Z$ occurring in the sum is $Z = V$
    with $m_Z = 1$ and because
    $$
    H^i(X, ((V \to X)_*\mathcal{O}_V) \otimes 
     \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}) =
    H^i(V,  \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_r^{\otimes n_r}|_V)
    $$
    by the projection formula
    (Cohomology, Section \ref{cohomology-section-projection-formula}) and
    Cohomology of Schemes, Lemma
    \ref{coherent-lemma-relative-affine-cohomology};
    so in this case we actually have $E(\mathcal{F}) = 0$.
    The result holds for the sheaf on the right because its support
    has dimension $< d$. Thus the result holds for the sheaf on the
    left and the lemma is proved.
    \end{proof}
    
    \begin{definition}
    \label{definition-intersection-number}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let
    $i : Z \to X$ be a closed subscheme of dimension $d$. Let
    $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be invertible
    $\mathcal{O}_X$-modules. We define the {\it intersection number}
    $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$
    as the coefficient of $n_1 \ldots n_d$ in the numerical polynomial
    $$
    \chi(X, i_*\mathcal{O}_Z \otimes \mathcal{L}_1^{\otimes n_1} \otimes
    \ldots \otimes \mathcal{L}_d^{\otimes n_d}) =
    \chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes
    \ldots \otimes \mathcal{L}_d^{\otimes n_d}|_Z)
    $$
    In the special
    case that $\mathcal{L}_1 = \ldots = \mathcal{L}_d = \mathcal{L}$
    we write $(\mathcal{L}^d \cdot Z)$.
    \end{definition}
    
    \noindent
    The displayed equality in the definition follows from
    the projection formula
    (Cohomology, Section \ref{cohomology-section-projection-formula}) and
    Cohomology of Schemes, Lemma
    \ref{coherent-lemma-relative-affine-cohomology}.
    We prove a few lemmas for these intersection numbers.
    
    \begin{lemma}
    \label{lemma-intersection-number-integer}
    In the situation of Definition \ref{definition-intersection-number}
    the intersection number
    $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$
    is an integer.
    \end{lemma}
    
    \begin{proof}
    Any numerical polynomial of degree $e$ in $n_1, \ldots, n_d$ can be
    written uniquely as a $\mathbf{Z}$-linear combination of the functions
    ${n_1 \choose k_1}{n_2 \choose k_2} \ldots {n_d \choose k_d}$ with
    $k_1 + \ldots + k_d \leq e$. Apply this with $e = d$.
    Left as an exercise.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-intersection-number-additive}
    In the situation of Definition \ref{definition-intersection-number}
    the intersection number
    $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$
    is additive: if $\mathcal{L}_i = \mathcal{L}_i' \otimes \mathcal{L}_i''$,
    then we have
    $$
    (\mathcal{L}_1 \cdots \mathcal{L}_i \cdots \mathcal{L}_d \cdot Z) =
    (\mathcal{L}_1 \cdots \mathcal{L}_i' \cdots \mathcal{L}_d \cdot Z) +
    (\mathcal{L}_1 \cdots \mathcal{L}_i'' \cdots \mathcal{L}_d \cdot Z)
    $$
    \end{lemma}
    
    \begin{proof}
    This is true because by Lemma \ref{lemma-numerical-polynomial-from-euler}
    the function
    $$
    (n_1, \ldots, n_{i - 1}, n_i', n_i'', n_{i + 1}, \ldots, n_d)
    \mapsto
    \chi(Z, \mathcal{L}_1^{\otimes n_1} \otimes
    \ldots \otimes (\mathcal{L}_i')^{\otimes n_i'} \otimes
    (\mathcal{L}_i'')^{\otimes n_i''} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d}|_Z)
    $$
    is a numerical polynomial of total degree at most $d$ in $d + 1$ variables.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-intersection-number-in-terms-of-components}
    In the situation of Definition \ref{definition-intersection-number}
    let $Z_i \subset Z$ be the irreducible components of dimension $d$. Let
    $m_i = \text{length}_{\mathcal{O}_{X, \xi_i}}(\mathcal{O}_{Z, \xi_i})$
    where $\xi_i \in Z_i$ is the generic point. Then
    $$
    (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z) =
    \sum m_i(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z_i)
    $$
    \end{lemma}
    
    \begin{proof}
    Immediate from Lemma \ref{lemma-numerical-polynomial-leading-term}
    and the definitions.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-intersection-number-and-pullback}
    Let $k$ be a field. Let $f : Y \to X$ be a morphism of proper schemes over $k$.
    Let $Z \subset Y$ be an integral closed subscheme of dimension $d$ and let
    $\mathcal{L}_1, \ldots, \mathcal{L}_d$ be invertible $\mathcal{O}_X$-modules.
    Then
    $$
    (f^*\mathcal{L}_1 \cdots f^*\mathcal{L}_d \cdot Z) =
    \deg(f|_Z : Z \to f(Z)) (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot f(Z))
    $$
    where $\deg(Z \to f(Z))$ is as in
    Morphisms, Definition \ref{morphisms-definition-degree}
    or $0$ if $\dim(f(Z)) < d$.
    \end{lemma}
    
    \begin{proof}
    The left hand side is computed using the coefficient of $n_1 \ldots n_d$
    in the function
    $$
    \chi(Y, \mathcal{O}_Z \otimes f^*\mathcal{L}_1^{\otimes n_1} \otimes
    \ldots \otimes f^*\mathcal{L}_d^{\otimes n_d}) =
    \sum (-1)^i
    \chi(X, R^if_*\mathcal{O}_Z \otimes
    \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d})
    $$
    The equality follows from Lemma \ref{lemma-euler-characteristic-morphism}
    and the projection formula
    (Cohomology, Lemma \ref{cohomology-lemma-projection-formula}).
    If $f(Z)$ has dimension $< d$, then the right hand side
    is a polynomial of total degree $<d$ by
    Lemma \ref{lemma-numerical-polynomial-from-euler}
    and the result is true. Assume $\dim(f(Z)) = d$. Let
    $\xi \in f(Z)$ be the generic point. By
    dimension theory (see Lemmas \ref{lemma-dimension-locally-algebraic} and
    \ref{lemma-dimension-fibres-locally-algebraic})
    the generic point of $Z$ is the unique point of $Z$ mapping to $\xi$.
    Then $f : Z \to f(Z)$ is finite over a nonempty open of $f(Z)$, see
    Morphisms, Lemma \ref{morphisms-lemma-generically-finite}.
    Thus $\deg(f : Z \to f(Z))$ is defined and in fact it is equal
    to the length of the stalk of $f_*\mathcal{O}_Z$ at $\xi$
    over $\mathcal{O}_{X, \xi}$. Moreover, the stalk of
    $R^if_*\mathcal{O}_X$ at $\xi$ is zero for $i > 0$ because
    we just saw that $f|_Z$ is finite in a neighbourhood of $\xi$
    (so that Cohomology of Schemes, Lemma
    \ref{coherent-lemma-finite-pushforward-coherent} gives the vanishing).
    Thus the terms $\chi(X, R^if_*\mathcal{O}_Z \otimes
    \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d})$ with $i > 0$ have total
    degree $< d$ and
    $$
    \chi(X, f_*\mathcal{O}_Z \otimes
    \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d})
    =
    \deg(f : Z \to f(Z)) \chi(f(Z),
    \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d}|_{f(Z)})
    $$
    modulo a polynomial of total degree $< d$ by
    Lemma \ref{lemma-numerical-polynomial-leading-term}.
    The desired result follows.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-numerical-intersection-effective-Cartier-divisor}
    Let $k$ be a field. Let $X$ be proper over $k$. Let $Z \subset X$ be
    a closed subscheme of dimension $d$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_d$
    be invertible $\mathcal{O}_X$-modules. Assume there exists an
    effective Cartier divisor $D \subset Z$ such that
    $\mathcal{L}_1|_Z \cong \mathcal{O}_Z(D)$. Then
    $$
    (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z) =
    (\mathcal{L}_2 \cdots \mathcal{L}_d \cdot D)
    $$
    \end{lemma}
    
    \begin{proof}
    We may replace $X$ by $Z$ and $\mathcal{L}_i$ by $\mathcal{L}_i|_Z$.
    Thus we may assume $X = Z$ and $\mathcal{L}_1 = \mathcal{O}_X(D)$.
    Then $\mathcal{L}_1^{-1}$ is the ideal sheaf of $D$ and we can
    consider the short exact sequence
    $$
    0 \to \mathcal{L}_1^{\otimes -1} \to \mathcal{O}_X \to \mathcal{O}_D \to 0
    $$
    Set
    $P(n_1, \ldots, n_d) =
    \chi(X, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d})$
    and
    $Q(n_1, \ldots, n_d) =
    \chi(D, \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes
    \mathcal{L}_d^{\otimes n_d}|_D)$.
    We conclude from additivity that
    $$
    P(n_1, \ldots, n_d) - P(n_1 - 1, n_2, \ldots, n_d) =
    Q(n_1, \ldots, n_d)
    $$
    Because the total degree of $P$ is at most $d$, we see that
    the coefficient of $n_1 \ldots n_d$ in $P$ is equal to the coefficient
    of $n_2 \ldots n_d$ in $Q$.
    \end{proof}
    
    \begin{lemma}
    \label{lemma-ample-positive}
    Let $k$ be a field. Let $X$ be proper over $k$. Let $Z \subset X$ be
    a closed subscheme of dimension $d$. If $\mathcal{L}_1, \ldots, \mathcal{L}_d$
    are ample, then $(\mathcal{L}_1 \cdots \mathcal{L}_d \cdot Z)$ is positive.
    \end{lemma}
    
    \begin{proof}
    We will prove this by induction on $d$. The case $d = 0$
    follows from Lemma \ref{lemma-chi-tensor-finite}. Assume $d > 0$.
    By Lemma \ref{lemma-intersection-number-in-terms-of-components}
    we may assume that $Z$ is an integral closed subscheme.
    In fact, we may replace $X$ by $Z$ and $\mathcal{L}_i$
    by $\mathcal{L}_i|_Z$ to reduce to the case $Z = X$ is a
    proper variety of dimension $d$.
    By Lemma \ref{lemma-intersection-number-additive}
    we may replace $\mathcal{L}_1$ by a positive tensor power.
    Thus we may assume there exists a nonzero section
    $s \in \Gamma(X, \mathcal{L}_1)$
    such that $X_s$ is affine (here we use the definition of
    ample invertible sheaf, see
    Properties, Definition \ref{properties-definition-ample}).
    Observe that $X$ is not affine because proper and affine
    implies finite (Morphisms, Lemma \ref{morphisms-lemma-finite-proper})
    which contradicts $d > 0$. It follows that $s$ has a nonempty vanishing
    scheme $Z(s) \subset X$. Since $X$ is a variety, $s$ is a regular section
    of $\mathcal{L}_1$, so $Z(s)$ is an effective Cartier divisor,
    thus $Z(s)$ has codimension $1$ in $X$, and
    hence $Z(s)$ has dimension $d - 1$ (here we use material from
    Divisors, Sections \ref{divisors-section-effective-Cartier-divisors} and
    \ref{divisors-section-Noetherian-effective-Cartier} and from dimension theory
    as in Lemma \ref{lemma-dimension-locally-algebraic}).
    By Lemma \ref{lemma-numerical-intersection-effective-Cartier-divisor}
    we have
    $$
    (\mathcal{L}_1 \cdots \mathcal{L}_d \cdot X) =
    (\mathcal{L}_2 \cdots \mathcal{L}_d \cdot Z(s))
    $$
    By induction the right hand side is positive and the proof is complete.
    \end{proof}
    
    \begin{definition}
    \label{definition-degree}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let
    $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module.
    For any closed subscheme the {\it degree of $Z$ with respect to
    $\mathcal{L}$}, denoted $\deg_\mathcal{L}(Z)$, is the
    the intersection number $(\mathcal{L}^d \cdot Z)$
    where $d = \dim(Z)$.
    \end{definition}
    
    \noindent
    By Lemma \ref{lemma-ample-positive} the degree of a subscheme is always a
    positive integer. We note that $\deg_\mathcal{L}(Z) = d$ if and only if
    $$
    \chi(Z, \mathcal{L}^{\otimes n}|_Z) = \frac{d}{\dim(Z)!} n^{\dim(Z)} + l.o.t
    $$
    as can be seen using that
    $$
    (n_1 + \ldots + n_{\dim(Z)})^{\dim(Z)} =
    \dim(Z)!\ n_1 \ldots n_{\dim(Z)} + \text{other terms}
    $$
    
    \begin{lemma}
    \label{lemma-degree-finite-morphism-in-terms-degrees}
    Let $k$ be a field. Let $f : Y \to X$ be a finite
    dominant morphism of proper varieties over $k$. Let $\mathcal{L}$
    be an ample invertible $\mathcal{O}_X$-module.
    Then
    $$
    \deg_{f^*\mathcal{L}}(Y) = \deg(f) \deg_\mathcal{L}(X)
    $$
    where $\deg(f)$ is as in
    Morphisms, Definition \ref{morphisms-definition-degree}.
    \end{lemma}
    
    \begin{proof}
    The statement makes sense because $f^*\mathcal{L}$ is ample by
    Morphisms, Lemma \ref{morphisms-lemma-pullback-ample-tensor-relatively-ample}.
    Having said this the result is a special case of
    Lemma \ref{lemma-intersection-number-and-pullback}.
    \end{proof}
    
    \noindent
    Finally we relate the intersection number with a curve to the notion
    of degrees of invertible modules on curves introduced in
    Section \ref{section-divisors-curves}.
    
    \begin{lemma}
    \label{lemma-intersection-numbers-and-degrees-on-curves}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$.
    Let $Z \subset X$ be a closed subscheme of dimension $\leq 1$.
    Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
    Then
    $$
    (\mathcal{L} \cdot Z) = \deg(\mathcal{L}|_Z)
    $$
    where $\deg(\mathcal{L}|_Z)$ is as in
    Definition \ref{definition-degree-invertible-sheaf}.
    If $\mathcal{L}$ is ample, then
    $\deg_\mathcal{L}(Z) = \deg(\mathcal{L}|_Z)$.
    \end{lemma}
    
    \begin{proof}
    This follows from the fact that the function
    $n \mapsto \chi(Z, \mathcal{L}|_Z^{\otimes n})$ has degree $1$
    and hence the leading coefficient is the difference of consecutive values.
    \end{proof}
    
    \begin{proposition}[Asymptotic Riemann-Roch]
    \label{proposition-asymptotic-riemann-roch}
    Let $k$ be a field. Let $X$ be a proper scheme over $k$ of dimension $d$.
    Let $\mathcal{L}$ be an ample invertible $\mathcal{O}_X$-module.
    Then
    $$
    \dim_k \Gamma(X, \mathcal{L}^{\otimes n}) \sim c n^d + l.o.t.
    $$
    where $c = \deg_\mathcal{L}(X)/d!$ is a positive constant.
    \end{proposition}
    
    \begin{proof}
    This follows from the definitions,
    Lemma \ref{lemma-ample-positive}, and the vanishing
    of higher cohomology in
    Cohomology of Schemes, Lemma \ref{coherent-lemma-vanshing-gives-ample}.
    \end{proof}

    Comments (0)

    There are no comments yet for this tag.

    Add a comment on tag 0BEL

    Your email address will not be published. Required fields are marked.

    In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the lower-right corner).

    All contributions are licensed under the GNU Free Documentation License.




    In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following box. So in case this where tag 0321 you just have to write 0321. Beware of the difference between the letter 'O' and the digit 0.

    This captcha seems more appropriate than the usual illegible gibberish, right?