Proposition 33.45.13 (Asymptotic Riemann-Roch). Let k be a field. Let X be a proper scheme over k of dimension d. Let \mathcal{L} be an ample invertible \mathcal{O}_ X-module. Then
where c = \deg _\mathcal {L}(X)/d! is a positive constant.
Proposition 33.45.13 (Asymptotic Riemann-Roch). Let k be a field. Let X be a proper scheme over k of dimension d. Let \mathcal{L} be an ample invertible \mathcal{O}_ X-module. Then
where c = \deg _\mathcal {L}(X)/d! is a positive constant.
Proof. This follows from the definitions, Lemma 33.45.9, and the vanishing of higher cohomology in Cohomology of Schemes, Lemma 30.17.1. \square
Comments (0)