Lemma 33.45.12. Let k be a field. Let X be a proper scheme over k. Let Z \subset X be a closed subscheme of dimension \leq 1. Let \mathcal{L} be an invertible \mathcal{O}_ X-module. Then
where \deg (\mathcal{L}|_ Z) is as in Definition 33.44.1. If \mathcal{L} is ample, then \deg _\mathcal {L}(Z) = \deg (\mathcal{L}|_ Z).
Comments (0)