The Stacks project

Lemma 33.45.1. Let $k$ be a field. Let $X$ be a proper scheme over $k$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ X$-module. Let $\mathcal{L}_1, \ldots , \mathcal{L}_ r$ be invertible $\mathcal{O}_ X$-modules. The map

\[ (n_1, \ldots , n_ r) \longmapsto \chi (X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}) \]

is a numerical polynomial in $n_1, \ldots , n_ r$ of total degree at most the dimension of the support of $\mathcal{F}$.

Proof. We prove this by induction on $\dim (\text{Supp}(\mathcal{F}))$. If this number is zero, then the function is constant with value $\dim _ k \Gamma (X, \mathcal{F})$ by Lemma 33.33.3. Assume $\dim (\text{Supp}(\mathcal{F})) > 0$.

If $\mathcal{F}$ has embedded associated points, then we can consider the short exact sequence $0 \to \mathcal{K} \to \mathcal{F} \to \mathcal{F}' \to 0$ constructed in Divisors, Lemma 31.4.6. Since the dimension of the support of $\mathcal{K}$ is strictly less, the result holds for $\mathcal{K}$ by induction hypothesis and with strictly smaller total degree. By additivity of the Euler characteristic (Lemma 33.33.2) it suffices to prove the result for $\mathcal{F}'$. Thus we may assume $\mathcal{F}$ does not have embedded associated points.

If $i : Z \to X$ is a closed immersion and $\mathcal{F} = i_*\mathcal{G}$, then we see that the result for $X$, $\mathcal{F}$, $\mathcal{L}_1, \ldots , \mathcal{L}_ r$ is equivalent to the result for $Z$, $\mathcal{G}$, $i^*\mathcal{L}_1, \ldots , i^*\mathcal{L}_ r$ (since the cohomologies agree, see Cohomology of Schemes, Lemma 30.2.4). Applying Divisors, Lemma 31.4.7 we may assume that $X$ has no embedded components and $X = \text{Supp}(\mathcal{F})$.

Pick a regular meromorphic section $s$ of $\mathcal{L}_1$, see Divisors, Lemma 31.25.4. Let $\mathcal{I} \subset \mathcal{O}_ X$ be the ideal of denominators of $s$ and consider the maps

\[ \mathcal{I}\mathcal{F} \to \mathcal{F},\quad \mathcal{I}\mathcal{F} \to \mathcal{F} \otimes \mathcal{L}_1 \]

of Divisors, Lemma 31.24.5. These are injective and have cokernels $\mathcal{Q}$, $\mathcal{Q}'$ supported on nowhere dense closed subschemes of $X = \text{Supp}(\mathcal{F})$. Tensoring with the invertible module $\mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}$ is exact, hence using additivity again we see that

\begin{align*} & \chi (X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}) - \chi (X, \mathcal{F} \otimes \mathcal{L}_1^{\otimes n_1 + 1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}) \\ & = \chi (\mathcal{Q} \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}) - \chi (\mathcal{Q}' \otimes \mathcal{L}_1^{\otimes n_1} \otimes \ldots \otimes \mathcal{L}_ r^{\otimes n_ r}) \end{align*}

Thus we see that the function $P(n_1, \ldots , n_ r)$ of the lemma has the property that

\[ P(n_1 + 1, n_2, \ldots , n_ r) - P(n_1, \ldots , n_ r) \]

is a numerical polynomial of total degree $<$ the dimension of the support of $\mathcal{F}$. Of course by symmetry the same thing is true for

\[ P(n_1, \ldots , n_{i - 1}, n_ i + 1, n_{i + 1}, \ldots , n_ r) - P(n_1, \ldots , n_ r) \]

for any $i \in \{ 1, \ldots , r\} $. A simple arithmetic argument shows that $P$ is a numerical polynomial of total degree at most $\dim (\text{Supp}(\mathcal{F}))$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BEM. Beware of the difference between the letter 'O' and the digit '0'.