Lemma 58.21.1. Let (A, \mathfrak m) be a Noetherian local ring with \dim (A) \geq 1. Let f \in \mathfrak m. Then there exist a \mathfrak p \in V(f) with \dim (A_\mathfrak p) = 1.
Proof. By induction on \dim (A). If \dim (A) = 1, then \mathfrak p = \mathfrak m works. If \dim (A) > 1, then let Z \subset \mathop{\mathrm{Spec}}(A) be an irreducible component of dimension > 1. Then V(f) \cap Z has dimension > 0 (Algebra, Lemma 10.60.13). Pick a prime \mathfrak q \in V(f) \cap Z, \mathfrak q \not= \mathfrak m corresponding to a closed point of the punctured spectrum of A; this is possible by Properties, Lemma 28.6.4. Then \mathfrak q is not the generic point of Z. Hence 0 < \dim (A_\mathfrak q) < \dim (A) and f \in \mathfrak q A_\mathfrak q. By induction on the dimension we can find f \in \mathfrak p \subset A_\mathfrak q with \dim ((A_\mathfrak q)_\mathfrak p) = 1. Then \mathfrak p \cap A works. \square
Comments (0)