The Stacks project

Lemma 51.12.1. Let $X$ be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement $Z$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ U$-module. Let $n \geq 0$ be an integer. Assume

  1. $X$ is universally catenary,

  2. for every $z \in Z$ the formal fibres of $\mathcal{O}_{X, z}$ are $(S_ n)$.

In this situation the following are equivalent

  1. for $x \in \text{Supp}(\mathcal{F})$ and $z \in Z \cap \overline{\{ x\} }$ we have $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) + \dim (\mathcal{O}_{\overline{\{ x\} }, z}) > n$,

  2. $R^ pj_*\mathcal{F}$ is coherent for $0 \leq p < n$.

Proof. The statement is local on $X$, hence we may assume $X$ is affine. Say $X = \mathop{\mathrm{Spec}}(A)$ and $Z = V(I)$. Let $M$ be a finite $A$-module whose associated coherent $\mathcal{O}_ X$-module restricts to $\mathcal{F}$ over $U$, see Lemma 51.8.2. This lemma also tells us that $R^ pj_*\mathcal{F}$ is coherent if and only if $H^{p + 1}_ Z(M)$ is a finite $A$-module. Observe that the minimum of the expressions $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) + \dim (\mathcal{O}_{\overline{\{ x\} }, z})$ is the number $s_{A, I}(M)$ of (51.11.1.1). Having said this the lemma follows from Theorem 51.11.6 as elucidated by Remark 51.11.7. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BJY. Beware of the difference between the letter 'O' and the digit '0'.