The Stacks project

51.12 Finiteness of pushforwards, II

This section is the continuation of Section 51.8. In this section we reap the fruits of the labor done in Section 51.11.

Lemma 51.12.1. Let $X$ be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement $Z$. Let $\mathcal{F}$ be a coherent $\mathcal{O}_ U$-module. Let $n \geq 0$ be an integer. Assume

  1. $X$ is universally catenary,

  2. for every $z \in Z$ the formal fibres of $\mathcal{O}_{X, z}$ are $(S_ n)$.

In this situation the following are equivalent

  1. for $x \in \text{Supp}(\mathcal{F})$ and $z \in Z \cap \overline{\{ x\} }$ we have $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) + \dim (\mathcal{O}_{\overline{\{ x\} }, z}) > n$,

  2. $R^ pj_*\mathcal{F}$ is coherent for $0 \leq p < n$.

Proof. The statement is local on $X$, hence we may assume $X$ is affine. Say $X = \mathop{\mathrm{Spec}}(A)$ and $Z = V(I)$. Let $M$ be a finite $A$-module whose associated coherent $\mathcal{O}_ X$-module restricts to $\mathcal{F}$ over $U$, see Lemma 51.8.2. This lemma also tells us that $R^ pj_*\mathcal{F}$ is coherent if and only if $H^{p + 1}_ Z(M)$ is a finite $A$-module. Observe that the minimum of the expressions $\text{depth}_{\mathcal{O}_{X, x}}(\mathcal{F}_ x) + \dim (\mathcal{O}_{\overline{\{ x\} }, z})$ is the number $s_{A, I}(M)$ of (51.11.1.1). Having said this the lemma follows from Theorem 51.11.6 as elucidated by Remark 51.11.7. $\square$

Lemma 51.12.2. Let $X$ be a locally Noetherian scheme. Let $j : U \to X$ be the inclusion of an open subscheme with complement $Z$. Let $n \geq 0$ be an integer. If $R^ pj_*\mathcal{O}_ U$ is coherent for $0 \leq p < n$, then the same is true for $R^ pj_*\mathcal{F}$, $0 \leq p < n$ for any finite locally free $\mathcal{O}_ U$-module $\mathcal{F}$.

Proof. The question is local on $X$, hence we may assume $X$ is affine. Say $X = \mathop{\mathrm{Spec}}(A)$ and $Z = V(I)$. Via Lemma 51.8.2 our lemma follows from Lemma 51.7.4. $\square$

reference

Lemma 51.12.3. Let $A$ be a ring and let $J \subset I \subset A$ be finitely generated ideals. Let $p \geq 0$ be an integer. Set $U = \mathop{\mathrm{Spec}}(A) \setminus V(I)$. If $H^ p(U, \mathcal{O}_ U)$ is annihilated by $J^ n$ for some $n$, then $H^ p(U, \mathcal{F})$ annihilated by $J^ m$ for some $m = m(\mathcal{F})$ for every finite locally free $\mathcal{O}_ U$-module $\mathcal{F}$.

Proof. Consider the annihilator $\mathfrak a$ of $H^ p(U, \mathcal{F})$. Let $u \in U$. There exists an open neighbourhood $u \in U' \subset U$ and an isomorphism $\varphi : \mathcal{O}_{U'}^{\oplus r} \to \mathcal{F}|_{U'}$. Pick $f \in A$ such that $u \in D(f) \subset U'$. There exist maps

\[ a : \mathcal{O}_ U^{\oplus r} \longrightarrow \mathcal{F} \quad \text{and}\quad b : \mathcal{F} \longrightarrow \mathcal{O}_ U^{\oplus r} \]

whose restriction to $D(f)$ are equal to $f^ N \varphi $ and $f^ N \varphi ^{-1}$ for some $N$. Moreover we may assume that $a \circ b$ and $b \circ a$ are equal to multiplication by $f^{2N}$. This follows from Properties, Lemma 28.17.3 since $U$ is quasi-compact ($I$ is finitely generated), separated, and $\mathcal{F}$ and $\mathcal{O}_ U^{\oplus r}$ are finitely presented. Thus we see that $H^ p(U, \mathcal{F})$ is annihilated by $f^{2N}J^ n$, i.e., $f^{2N}J^ n \subset \mathfrak a$.

As $U$ is quasi-compact we can find finitely many $f_1, \ldots , f_ t$ and $N_1, \ldots , N_ t$ such that $U = \bigcup D(f_ i)$ and $f_ i^{2N_ i}J^ n \subset \mathfrak a$. Then $V(I) = V(f_1, \ldots , f_ t)$ and since $I$ is finitely generated we conclude $I^ M \subset (f_1, \ldots , f_ t)$ for some $M$. All in all we see that $J^ m \subset \mathfrak a$ for $m \gg 0$, for example $m = M (2N_1 + \ldots + 2N_ t) n$ will do. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BJX. Beware of the difference between the letter 'O' and the digit '0'.