The Stacks project

Lemma 51.7.4. Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal. Set $Z = V(I)$. Let $n \geq 0$ be an integer. If $H^ i_ Z(A)$ is finite for $0 \leq i \leq n$, then the same is true for $H^ i_ Z(M)$, $0 \leq i \leq n$ for any finite $A$-module $M$ such that $M_ f$ is a finite locally free $A_ f$-module for all $f \in I$.

Proof. The assumption that $H^ i_ Z(A)$ is finite for $0 \leq i \leq n$ implies there exists an $e \geq 0$ such that $I^ e$ annihilates $H^ i_ Z(A)$ for $0 \leq i \leq n$, see Lemma 51.7.1. Then Lemma 51.7.3 implies that $H^ i_ Z(M)$, $0 \leq i \leq n$ is annihilated by $I^ m$ for some $m = m(M, i)$. We may take the same $m$ for all $0 \leq i \leq n$. Then Lemma 51.7.1 implies that $H^ i_ Z(M)$ is finite for $0 \leq i \leq n$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BPY. Beware of the difference between the letter 'O' and the digit '0'.