Lemma 28.17.3. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{L})$ be a section. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent $\mathcal{O}_ X$-modules.
Proof. We first prove the lemma in case $X = \mathop{\mathrm{Spec}}(A)$ is affine and $\mathcal{L} = \mathcal{O}_ X$. In this case $s$ corresponds to an element $f \in A$. Say $\mathcal{F} = \widetilde{M}$ and $\mathcal{G} = \widetilde{N}$ for some $A$-modules $M$ and $N$. Then the lemma translates (via Lemmas 28.16.1 and 28.16.2) into the following algebra statements
If $M$ is a finite $A$-module and $\varphi : M \to N$ is an $A$-module map such that the induced map $M_ f \to N_ f$ is zero, then $f^ n\varphi = 0$ for some $n$.
If $M$ is a finitely presented $A$-module, then $\mathop{\mathrm{Hom}}\nolimits _ A(M, N)_ f = \mathop{\mathrm{Hom}}\nolimits _{A_ f}(M_ f, N_ f)$.
The second statement is Algebra, Lemma 10.10.2 and we omit the proof of the first statement.
Next, we prove (1) for general $X$. Assume $X$ is quasi-compact and hoose a finite affine open covering $X = U_1 \cup \ldots \cup U_ m$ with $U_ j$ affine and $\mathcal{L}|_{U_ j} \cong \mathcal{O}_{U_ j}$. Via this isomorphism, the image $s|_{U_ j}$ corresponds to some $f_ j \in \Gamma (U_ j, \mathcal{O}_{U_ j})$. Then $X_ s \cap U_ j = D(f_ j)$. Let $\alpha /s^ n$ be an element in the kernel of (28.17.2.1). Then $\alpha |_{X_ s} = 0$. Hence $(\alpha |_{U_ j})|_{D(f_ j)} = 0$. By the affine case treated above we conclude that $f_ j^{e_ j} \alpha |_{U_ j} = 0$ for some $e_ j \geq 0$. Let $e = \max (e_ j)$. Then we see that $\alpha \otimes s^ e$ restricts to zero on $U_ j$ for all $j$, hence is zero. Since $\alpha /s^ n$ is equal to $\alpha \otimes s^ e/s^{n + e}$ in $M_{(s)}$ we conclude that $\alpha /s^ n = 0$ as desired.
Proof of (2). Since $\mathcal{F}$ is of finite presentation, the sheaf $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ is quasi-coherent, see Schemes, Section 26.24. Moreover, it is clear that
for all $n$. Hence in this case the statement follows from Lemma 28.17.2 applied to $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)