Lemma 28.17.2. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible sheaf on $X$. Let $s \in \Gamma (X, \mathcal{L})$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module.
[Section 6.8, EGA1-second]
In particular, the canonical map
is an isomorphism if $X$ is quasi-compact and quasi-separated.
Proof. Assume $X$ is quasi-compact. Choose a finite affine open covering $X = U_1 \cup \ldots \cup U_ m$ with $U_ j$ affine and $\mathcal{L}|_{U_ j} \cong \mathcal{O}_{U_ j}$. Via this isomorphism, the image $s|_{U_ j}$ corresponds to some $f_ j \in \Gamma (U_ j, \mathcal{O}_{U_ j})$. Then $X_ s \cap U_ j = D(f_ j)$.
Proof of (1). Let $t/s^ n$ be an element in the kernel of (28.17.1.1). Then $t|_{X_ s} = 0$. Hence $(t|_{U_ j})|_{D(f_ j)} = 0$. By Lemma 28.17.1 we conclude that $f_ j^{e_ j} t|_{U_ j} = 0$ for some $e_ j \geq 0$. Let $e = \max (e_ j)$. Then we see that $t \otimes s^ e$ restricts to zero on $U_ j$ for all $j$, hence is zero. Since $t/s^ n$ is equal to $t \otimes s^ e/s^{n + e}$ in $\Gamma _*(X, \mathcal{L}, \mathcal{F})_{(s)}$ we conclude that $t/s^ n = 0$ as desired.
Proof of (2). Assume $X$ is quasi-compact and quasi-separated. Then $U_ j \cap U_{j'}$ is quasi-compact for all pairs $j, j'$, see Schemes, Lemma 26.21.6. By part (1) we know (28.17.1.1) is injective. Let $t' \in \Gamma (X_ s, \mathcal{F}|_{X_ s})$. For every $j$, there exist an integer $e_ j \geq 0$ and $t'_ j \in \Gamma (U_ j, \mathcal{F}|_{U_ j})$ such that $t'|_{D(f_ j)}$ corresponds to $t'_ j/f_ j^{e_ j}$ via the isomorphism of Lemma 28.17.1. Set $e = \max (e_ j)$ and
where $q_ j \in \Gamma (U_ j, \mathcal{L}|_{U_ j})$ is the trivializing section coming from the isomorphism $\mathcal{L}|_{U_ j} \cong \mathcal{O}_{U_ j}$. In particular we have $s|_{U_ j} = f_ j q_ j$. Using this a calculation shows that $t_ j|_{U_ j \cap U_{j'}}$ and $t_{j'}|_{U_ j \cap U_{j'}}$ map to the same section of $\mathcal{F}$ over $U_ j \cap U_{j'} \cap X_ s$. By quasi-compactness of $U_ j \cap U_{j'}$ and part (1) there exists an integer $e' \geq 0$ such that
as sections of $\mathcal{F} \otimes \mathcal{L}^{\otimes e + e'}$ over $U_ j \cap U_{j'}$. We may choose the same $e'$ to work for all pairs $j, j'$. Then the sheaf conditions implies there is a section $t \in \Gamma (X, \mathcal{F} \otimes \mathcal{L}^{\otimes e + e'})$ whose restriction to $U_ j$ is $t_ j \otimes s^{e'}|_{U_ j}$. A simple computation shows that $t/s^{e + e'}$ maps to $t'$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (7)
Comment #2595 by Rogier Brussee on
Comment #2623 by Johan on
Comment #4719 by Manuel Hoff on
Comment #4809 by Johan on
Comment #11098 by Elías Guisado on
Comment #11100 by Laurent Moret-Bailly on
Comment #11235 by Stacks project on
There are also: