## 27.17 Sections over principal opens

Here is a typical result of this kind. We will use a more naive but more direct method of proof in later lemmas.

Lemma 27.17.1. Let $X$ be a scheme. Let $f \in \Gamma (X, \mathcal{O}_ X)$. Denote $X_ f \subset X$ the open where $f$ is invertible, see Schemes, Lemma 25.6.2. If $X$ is quasi-compact and quasi-separated, the canonical map

$\Gamma (X, \mathcal{O}_ X)_ f \longrightarrow \Gamma (X_ f, \mathcal{O}_ X)$

is an isomorphism. Moreover, if $\mathcal{F}$ is a quasi-coherent sheaf of $\mathcal{O}_ X$-modules the map

$\Gamma (X, \mathcal{F})_ f \longrightarrow \Gamma (X_ f, \mathcal{F})$

is an isomorphism.

Proof. Write $R = \Gamma (X, \mathcal{O}_ X)$. Consider the canonical morphism

$\varphi : X \longrightarrow \mathop{\mathrm{Spec}}(R)$

of schemes, see Schemes, Lemma 25.6.4. Then the inverse image of the standard open $D(f)$ on the right hand side is $X_ f$ on the left hand side. Moreover, since $X$ is assumed quasi-compact and quasi-separated the morphism $\varphi$ is quasi-compact and quasi-separated, see Schemes, Lemma 25.19.2 and 25.21.13. Hence by Schemes, Lemma 25.24.1 we see that $\varphi _*\mathcal{F}$ is quasi-coherent. Hence we see that $\varphi _*\mathcal{F} = \widetilde M$ with $M = \Gamma (X, \mathcal{F})$ as an $R$-module. Thus we see that

$\Gamma (X_ f, \mathcal{F}) = \Gamma (D(f), \varphi _*\mathcal{F}) = \Gamma (D(f), \widetilde M) = M_ f$

which is exactly the content of the lemma. The first displayed isomorphism of the lemma follows by taking $\mathcal{F} = \mathcal{O}_ X$. $\square$

Recall that given a scheme $X$, an invertible sheaf $\mathcal{L}$ on $X$, and a sheaf of $\mathcal{O}_ X$-modules $\mathcal{F}$ we get a graded ring $\Gamma _*(X, \mathcal{L}) = \bigoplus \nolimits _{n \geq 0} \Gamma (X, \mathcal{L}^{\otimes n})$ and a graded $\Gamma _*(X, \mathcal{L})$-module $\Gamma _*(X, \mathcal{L}, \mathcal{F}) = \bigoplus \nolimits _{n \in \mathbf{Z}} \Gamma (X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})$ see Modules, Definition 17.22.7. If we have moreover a section $s \in \Gamma (X, \mathcal{L})$, then we obtain a map

27.17.1.1
\begin{equation} \label{properties-equation-module-invert-s} \Gamma _*(X, \mathcal{L}, \mathcal{F})_{(s)} \longrightarrow \Gamma (X_ s, \mathcal{F}|_{X_ s}) \end{equation}

which sends $t/s^ n$ where $t \in \Gamma (X, \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})$ to $t|_{X_ s} \otimes s|_{X_ s}^{-n}$. This makes sense because $X_ s \subset X$ is by definition the open over which $s$ has an inverse, see Modules, Lemma 17.22.10.

Lemma 27.17.2. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible sheaf on $X$. Let $s \in \Gamma (X, \mathcal{L})$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module.

1. If $X$ is quasi-compact, then (27.17.1.1) is injective, and

2. if $X$ is quasi-compact and quasi-separated, then (27.17.1.1) is an isomorphism.

In particular, the canonical map

$\Gamma _*(X, \mathcal{L})_{(s)} \longrightarrow \Gamma (X_ s, \mathcal{O}_ X),\quad a/s^ n \longmapsto a \otimes s^{-n}$

is an isomorphism if $X$ is quasi-compact and quasi-separated.

Proof. Assume $X$ is quasi-compact. Choose a finite affine open covering $X = U_1 \cup \ldots \cup U_ m$ with $U_ j$ affine and $\mathcal{L}|_{U_ j} \cong \mathcal{O}_{U_ j}$. Via this isomorphism, the image $s|_{U_ j}$ corresponds to some $f_ j \in \Gamma (U_ j, \mathcal{O}_{U_ j})$. Then $X_ s \cap U_ j = D(f_ j)$.

Proof of (1). Let $t/s^ n$ be an element in the kernel of (27.17.1.1). Then $t|_{X_ s} = 0$. Hence $(t|_{U_ j})|_{D(f_ j)} = 0$. By Lemma 27.17.1 we conclude that $f_ j^{e_ j} t|_{U_ j} = 0$ for some $e_ j \geq 0$. Let $e = \max (e_ j)$. Then we see that $t \otimes s^ e$ restricts to zero on $U_ j$ for all $j$, hence is zero. Since $t/s^ n$ is equal to $t \otimes s^ e/s^{n + e}$ in $\Gamma _*(X, \mathcal{L}, \mathcal{F})_{(s)}$ we conclude that $t/s^ n = 0$ as desired.

Proof of (2). Assume $X$ is quasi-compact and quasi-separated. Then $U_ j \cap U_{j'}$ is quasi-compact for all pairs $j, j'$, see Schemes, Lemma 25.21.6. By part (1) we know (27.17.1.1) is injective. Let $t' \in \Gamma (X_ s, \mathcal{F}|_{X_ s})$. For every $j$, there exist an integer $n_ j \geq 0$ and $t'_ j \in \Gamma (U_ j, \mathcal{F}|_{U_ j})$ such that $t'|_{D(f_ j)}$ corresponds to $t'_ j/f_ j^{e_ j}$ via the isomorphism of Lemma 27.17.1. Set $e = \max (e_ j)$ and

$t_ j = t'_ j \otimes s|_{U_ j}^ e \in \Gamma (U_ j, (\mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes e})|_{U_ j})$

Then we see that $t_ j|_{U_ j \cap U_{j'}}$ and $t_{j'}|_{U_ j \cap U_{j'}}$ map to the same section of $\mathcal{F}$ over $U_ j \cap U_{j'} \cap X_ s$. By quasi-compactness of $U_ j \cap U_{j'}$ and part (1) there exists an integer $e' \geq 0$ such that

$t_ j|_{U_ j \cap U_{j'}} \otimes s^{e'}|_{U_ j \cap U_{j'}} = t_{j'}|_{U_ j \cap U_{j'}} \otimes s^{e'}|_{U_ j \cap U_{j'}}$

as sections of $\mathcal{F} \otimes \mathcal{L}^{\otimes e + e'}$ over $U_ j \cap U_{j'}$. We may choose the same $e'$ to work for all pairs $j, j'$. Then the sheaf conditions implies there is a section $t \in \Gamma (X, \mathcal{F} \otimes \mathcal{L}^{\otimes e + e'})$ whose restriction to $U_ j$ is $t_ j \otimes s^{e'}|_{U_ j}$. A simple computation shows that $t/s^{e + e'}$ maps to $t'$ as desired. $\square$

Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $\mathcal{F}$ and $\mathcal{G}$ be quasi-coherent $\mathcal{O}_ X$-modules. Consider the graded $\Gamma _*(X, \mathcal{L})$-module

$M = \bigoplus \nolimits _{n \in \mathbf{Z}} \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n})$

Next, let $s \in \Gamma (X, \mathcal{L})$ be a section. Then there is a canonical map

27.17.2.1
\begin{equation} \label{properties-equation-hom-invert-s} M_{(s)} \longrightarrow \mathop{\mathrm{Hom}}\nolimits _{\mathcal{O}_{X_ s}}(\mathcal{F}|_{X_ s}, \mathcal{G}|_{X_ s}) \end{equation}

which sends $\alpha /s^ n$ to the map $\alpha |_{X_ s} \otimes s|_{X_ s}^{-n}$. The following lemma, combined with Lemma 27.22.4, says roughly that, if $X$ is quasi-compact and quasi-separated, the category of finitely presented $\mathcal{O}_{X_ s}$-modules is the category of finitely presented $\mathcal{O}_ X$-modules with the multiplicative system of maps $s^ n: \mathcal{F} \to \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}$ inverted.

Lemma 27.17.3. Let $X$ be a scheme. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ X$-module. Let $s \in \Gamma (X, \mathcal{L})$ be a section. Let $\mathcal{F}$, $\mathcal{G}$ be quasi-coherent $\mathcal{O}_ X$-modules.

1. If $X$ is quasi-compact and $\mathcal{F}$ is of finite type, then (27.17.2.1) is injective, and

2. if $X$ is quasi-compact and quasi-separated and $\mathcal{F}$ is of finite presentation, then (27.17.2.1) is bijective.

Proof. We first prove the lemma in case $X = \mathop{\mathrm{Spec}}(A)$ is affine and $\mathcal{L} = \mathcal{O}_ X$. In this case $s$ corresponds to an element $f \in A$. Say $\mathcal{F} = \widetilde{M}$ and $\mathcal{G} = \widetilde{N}$ for some $A$-modules $M$ and $N$. Then the lemma translates (via Lemmas 27.16.1 and 27.16.2) into the following algebra statements

1. If $M$ is a finite $A$-module and $\varphi : M \to N$ is an $A$-module map such that the induced map $M_ f \to N_ f$ is zero, then $f^ n\varphi = 0$ for some $n$.

2. If $M$ is a finitely presented $A$-module, then $\mathop{\mathrm{Hom}}\nolimits _ A(M, N)_ f = \mathop{\mathrm{Hom}}\nolimits _{A_ f}(M_ f, N_ f)$.

The second statement is Algebra, Lemma 10.10.2 and we omit the proof of the first statement.

Next, we prove (1) for general $X$. Assume $X$ is quasi-compact and hoose a finite affine open covering $X = U_1 \cup \ldots \cup U_ m$ with $U_ j$ affine and $\mathcal{L}|_{U_ j} \cong \mathcal{O}_{U_ j}$. Via this isomorphism, the image $s|_{U_ j}$ corresponds to some $f_ j \in \Gamma (U_ j, \mathcal{O}_{U_ j})$. Then $X_ s \cap U_ j = D(f_ j)$. Let $\alpha /s^ n$ be an element in the kernel of (27.17.2.1). Then $\alpha |_{X_ s} = 0$. Hence $(\alpha |_{U_ j})|_{D(f_ j)} = 0$. By the affine case treated above we conclude that $f_ j^{e_ j} \alpha |_{U_ j} = 0$ for some $e_ j \geq 0$. Let $e = \max (e_ j)$. Then we see that $\alpha \otimes s^ e$ restricts to zero on $U_ j$ for all $j$, hence is zero. Since $\alpha /s^ n$ is equal to $\alpha \otimes s^ e/s^{n + e}$ in $M_{(s)}$ we conclude that $\alpha /s^ n = 0$ as desired.

Proof of (2). Since $\mathcal{F}$ is of finite presentation, the sheaf $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$ is quasi-coherent, see Schemes, Section 25.24. Moreover, it is clear that

$\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G} \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}) = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G}) \otimes _{\mathcal{O}_ X} \mathcal{L}^{\otimes n}$

for all $n$. Hence in this case the statement follows from Lemma 27.17.2 applied to $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{F}, \mathcal{G})$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0B5K. Beware of the difference between the letter 'O' and the digit '0'.