The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Example 15.83.4. Let $A$ be a ring and let $f \in A$. Denote $K \mapsto K^\wedge $ the derived completion with respect to $(f)$. Let $M$ be an $A$-module. Using that

\[ M^\wedge = R\mathop{\mathrm{lim}}\nolimits (M \xrightarrow {f^ n} M) \]

by Lemma 15.82.17 and using Lemma 15.78.4 we obtain

\[ H^{-1}(M^\wedge ) = \mathop{\mathrm{lim}}\nolimits M[f^ n] = T_ f(M) \]

the $f$-adic Tate module of $M$. Here the maps $M[f^ n] \to M[f^{n - 1}]$ are given by multiplication by $f$. Then there is a short exact sequence

\[ 0 \to R^1\mathop{\mathrm{lim}}\nolimits M[f^ n] \to H^0(M^\wedge ) \to \mathop{\mathrm{lim}}\nolimits M/f^ n M \to 0 \]

describing $H^0(M^\wedge )$. We have $H^1(M^\wedge ) = R^1\mathop{\mathrm{lim}}\nolimits M/f^ nM = 0$ as the transition maps are surjective (Lemma 15.78.1). All the other cohomologies of $M^\wedge $ are zero for trivial reasons. We claim that for $K \in D(A)$ there are short exact sequences

\[ 0 \to H^0(H^ n(K)^\wedge ) \to H^ n(K^\wedge ) \to T_ f(H^{n + 1}(K)) \to 0 \]

Namely this follows from the spectral sequence of Example 15.82.20 because it degenerates at $E_2$ (as only $i = -1, 0$ give nonzero terms).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BKG. Beware of the difference between the letter 'O' and the digit '0'.