Lemma 21.23.5. Let (\mathcal{C}, \mathcal{O}) be a ringed site. Let (\mathcal{F}_ n) be an inverse system of \mathcal{O}-modules. Let \mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) be a subset. Assume
every object of \mathcal{C} has a covering whose members are elements of \mathcal{B},
H^ p(U, \mathcal{F}_ n) = 0 for p > 0 and U \in \mathcal{B},
the inverse system \mathcal{F}_ n(U) has vanishing R^1\mathop{\mathrm{lim}}\nolimits for U \in \mathcal{B}.
Then R\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n and we have H^ p(U, \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n) = 0 for p > 0 and U \in \mathcal{B}.
Proof.
Set K_ n = \mathcal{F}_ n and K = R\mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n. Using the notation of Remark 21.23.4 and assumption (2) we see that for U \in \mathcal{B} we have \underline{\mathcal{H}}_ n^ m(U) = 0 when m \not= 0 and \underline{\mathcal{H}}_ n^0(U) = \mathcal{F}_ n(U). From Equation (21.23.4.1) and assumption (3) we see that \underline{\mathcal{H}}^ m(U) = 0 when m \not= 0 and equal to \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n(U) when m = 0. Sheafifying using (1) we find that \mathcal{H}^ m = 0 when m \not= 0 and equal to \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n when m = 0. Hence K = \mathop{\mathrm{lim}}\nolimits \mathcal{F}_ n. Since H^ m(U, K) = \underline{\mathcal{H}}^ m(U) = 0 for m > 0 (see above) we see that the second assertion holds.
\square
Comments (0)