Processing math: 100%

The Stacks project

Slightly improved version of [Lemma 1.6, Bhatt-local]

Lemma 52.3.2. Let A be a ring and f \in A. Let X be a scheme over A. Let \mathcal{F} be a quasi-coherent \mathcal{O}_ X-module. Assume that \mathcal{F}[f^ n] = \mathop{\mathrm{Ker}}(f^ n : \mathcal{F} \to \mathcal{F}) stabilizes. Then

R\Gamma (X, \mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F}) = R\Gamma (X, \mathcal{F})^\wedge

where the right hand side indicates the derived completion with respect to the ideal (f) \subset A. Consequently, for p \in \mathbf{Z} we obtain a commutative diagram

\xymatrix{ & 0 & 0 \\ 0 \ar[r] & \widehat{H^ p(X, \mathcal{F})} \ar[r] \ar[u] & \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}/f^ n\mathcal{F}) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] & 0 \\ 0 \ar[r] & H^0(H^ p(X, \mathcal{F})^\wedge ) \ar[r] \ar[u] & H^ p(X, \mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F}) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] \ar@{=}[u] & 0 \\ & R^1\mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})[f^ n] \ar[u] \ar[r]^\cong & R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(X, \mathcal{F}/f^ n\mathcal{F}) \ar[u] \\ & 0 \ar[u] & 0 \ar[u] }

with exact rows and columns where \widehat{H^ p(X, \mathcal{F})} = \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})/f^ n H^ p(X, \mathcal{F}) is the usual f-adic completion and T_ f(-) denotes the f-adic Tate module as in More on Algebra, Example 15.93.5.

Proof. By Lemma 52.2.1 we have \mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F} = R\mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n \mathcal{F}. Everything else follows from Cohomology, Example 20.39.3. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.