Slightly improved version of [Lemma 1.6, Bhatt-local]

Lemma 52.3.2. Let $A$ be a ring and $f \in A$. Let $X$ be a scheme over $A$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Assume that $\mathcal{F}[f^ n] = \mathop{\mathrm{Ker}}(f^ n : \mathcal{F} \to \mathcal{F})$ stabilizes. Then

$R\Gamma (X, \mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F}) = R\Gamma (X, \mathcal{F})^\wedge$

where the right hand side indicates the derived completion with respect to the ideal $(f) \subset A$. Consequently, for $p \in \mathbf{Z}$ we obtain a commutative diagram

$\xymatrix{ & 0 & 0 \\ 0 \ar[r] & \widehat{H^ p(X, \mathcal{F})} \ar[r] \ar[u] & \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F}/f^ n\mathcal{F}) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] & 0 \\ 0 \ar[r] & H^0(H^ p(X, \mathcal{F})^\wedge ) \ar[r] \ar[u] & H^ p(X, \mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F}) \ar[r] \ar[u] & T_ f(H^{p + 1}(X, \mathcal{F})) \ar[r] \ar@{=}[u] & 0 \\ & R^1\mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})[f^ n] \ar[u] \ar[r]^\cong & R^1\mathop{\mathrm{lim}}\nolimits H^{p - 1}(X, \mathcal{F}/f^ n\mathcal{F}) \ar[u] \\ & 0 \ar[u] & 0 \ar[u] }$

with exact rows and columns where $\widehat{H^ p(X, \mathcal{F})} = \mathop{\mathrm{lim}}\nolimits H^ p(X, \mathcal{F})/f^ n H^ p(X, \mathcal{F})$ is the usual $f$-adic completion and $T_ f(-)$ denotes the $f$-adic Tate module as in More on Algebra, Example 15.93.5.

Proof. By Lemma 52.2.1 we have $\mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n\mathcal{F} = R\mathop{\mathrm{lim}}\nolimits \mathcal{F}/f^ n \mathcal{F}$. Everything else follows from Cohomology, Example 20.39.3. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).