Lemma 58.19.3. In Situation 58.19.1. Let V \to U be a finite morphism. Let A^\wedge be the \mathfrak m-adic completion of A, let X' = \mathop{\mathrm{Spec}}(A^\wedge ) and let U' and V' be the base changes of U and V to X'. If Y' \to X' is a finite morphism such that V' = Y' \times _{X'} U', then there exists a finite morphism Y \to X such that V = Y \times _ X U and Y' = Y \times _ X X'.
Proof. This is a straightforward application of More on Algebra, Proposition 15.89.16. Namely, choose generators f_1, \ldots , f_ t of \mathfrak m. For each i write V \times _ U D(f_ i) = \mathop{\mathrm{Spec}}(B_ i). For 1 \leq i, j \leq n we obtain an isomorphism \alpha _{ij} : (B_ i)_{f_ j} \to (B_ j)_{f_ i} of A_{f_ if_ j}-algebras because the spectrum of both represent V \times _ U D(f_ if_ j). Write Y' = \mathop{\mathrm{Spec}}(B'). Since V \times _ U U' = Y \times _{X'} U' we get isomorphisms \alpha _ i : B'_{f_ i} \to B_ i \otimes _ A A^\wedge . A straightforward argument shows that (B', B_ i, \alpha _ i, \alpha _{ij}) is an object of \text{Glue}(A \to A^\wedge , f_1, \ldots , f_ t), see More on Algebra, Remark 15.89.10. Applying the proposition cited above (and using More on Algebra, Remark 15.89.20 to obtain the algebra structure) we find an A-algebra B such that \text{Can}(B) is isomorphic to (B', B_ i, \alpha _ i, \alpha _{ij}). Setting Y = \mathop{\mathrm{Spec}}(B) we see that Y \to X is a morphism which comes equipped with compatible isomorphisms V \cong Y \times _ X U and Y' = Y \times _ X X' as desired. \square
Comments (0)