Lemma 37.14.2. Let $\mathcal{I} \to (\mathit{Sch}/S)_{fppf}$, $i \mapsto X_ i$ be a diagram of schemes. Let $(W, X_ i \to W)$ be a cocone for the diagram in the category of schemes (Categories, Remark 4.14.5). If there exists a fpqc covering $\{ W_ a \to W\} _{a \in A}$ of schemes such that
for all $a \in A$ we have $W_ a = \mathop{\mathrm{colim}}\nolimits X_ i \times _ W W_ a$ in the category of schemes, and
for all $a, b \in A$ we have $W_ a \times _ W W_ b = \mathop{\mathrm{colim}}\nolimits X_ i \times _ W W_ a \times _ W W_ b$ in the category of schemes,
then $W = \mathop{\mathrm{colim}}\nolimits X_ i$ in the category of schemes.
Comments (0)
There are also: