Lemma 106.3.9. Let $\mathcal{X} \subset \mathcal{X}'$ be a thickening of algebraic stacks. Then
$\mathcal{X}$ is an algebraic space if and only if $\mathcal{X}'$ is an algebraic space,
$\mathcal{X}$ is a scheme if and only if $\mathcal{X}'$ is a scheme,
$\mathcal{X}$ is DM if and only if $\mathcal{X}'$ is DM,
$\mathcal{X}$ is quasi-DM if and only if $\mathcal{X}'$ is quasi-DM,
$\mathcal{X}$ is separated if and only if $\mathcal{X}'$ is separated,
$\mathcal{X}$ is quasi-separated if and only if $\mathcal{X}'$ is quasi-separated, and
add more here.
Comments (0)