The Stacks project

Lemma 49.4.4. Let $A \to B$ be a flat quasi-finite map of Noetherian rings. Let $\tau \in \omega _{B/A}$ be a trace element.

  1. If $A \to A_1$ is a map with $A_1$ Noetherian, then with $B_1 = A_1 \otimes _ A B$ the image of $\tau $ in $\omega _{B_1/A_1}$ is a trace element.

  2. If $A = R_ f$, then $\tau $ is a trace element in $\omega _{B/R}$.

  3. If $g \in B$, then the image of $\tau $ in $\omega _{B_ g/A}$ is a trace element.

  4. If $B = B_1 \times B_2$, then $\tau $ maps to a trace element in both $\omega _{B_1/A}$ and $\omega _{B_2/A}$.

Proof. Part (1) is a formal consequence of the definition.

Statement (2) makes sense because $\omega _{B/R} = \omega _{B/A}$ by Lemma 49.2.3. Denote $\tau '$ the element $\tau $ but viewed as an element of $\omega _{B/R}$. To see that (2) is true suppose that we have $R \to R_1$ with $R_1$ Noetherian and a product decomposition $B \otimes _ R R_1 = C \times D$ with $R_1 \to C$ finite. Then with $A_1 = (R_1)_ f$ we see that $B \otimes _ A A_1 = C \times D$. Since $R_1 \to C$ is finite, a fortiori $A_1 \to C$ is finite. Hence we can use the defining property of $\tau $ to get the corresponding property of $\tau '$.

Statement (3) makes sense because $\omega _{B_ g/A} = (\omega _{B/A})_ g$ by Lemma 49.2.3. The proof is similar to the proof of (2). Suppose we have $A \to A_1$ with $A_1$ Noetherian and a product decomposition $B_ g \otimes _ A A_1 = C \times D$ with $A_1 \to C$ finite. Set $B_1 = B \otimes _ A A_1$. Then $\mathop{\mathrm{Spec}}(C) \to \mathop{\mathrm{Spec}}(B_1)$ is an open immersion as $B_ g \otimes _ A A_1 = (B_1)_ g$ and the image is closed because $B_1 \to C$ is finite (as $A_1 \to C$ is finite). Thus we see that $B_1 = C \times D_1$ and $D = (D_1)_ g$. Then we can use the defining property of $\tau $ to get the corresponding property for the image of $\tau $ in $\omega _{B_ g/A}$.

Statement (4) makes sense because $\omega _{B/A} = \omega _{B_1/A} \times \omega _{B_2/A}$ by Lemma 49.2.7. Suppose we have $A \to A'$ with $A'$ Noetherian and a product decomposition $B \otimes _ A A' = C \times D$ with $A' \to C$ finite. Then it is clear that we can refine this product decomposition into $B \otimes _ A A' = C_1 \times C_2 \times D_1 \times D_2$ with $A' \to C_ i$ finite such that $B_ i \otimes _ A A' = C_ i \times D_ i$. Then we can use the defining property of $\tau $ to get the corresponding property for the image of $\tau $ in $\omega _{B_ i/A}$. This uses the obvious fact that $\text{Trace}_{C/A'} = (\text{Trace}_{C_1/A'}, \text{Trace}_{C_2/A'})$ under the decomposition $\omega _{C/A'} = \omega _{C_1/A'} \times \omega _{C_2/A'}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BT9. Beware of the difference between the letter 'O' and the digit '0'.