Theorem 59.45.1. Let $X$ and $Y$ be two schemes over a base scheme $S$. Let $S' \to S$ be a universal homeomorphism. Denote $X'$ (resp. $Y'$) the base change to $S'$. If $X$ is étale over $S$, then the map
is bijective.
Theorem 59.45.1. Let $X$ and $Y$ be two schemes over a base scheme $S$. Let $S' \to S$ be a universal homeomorphism. Denote $X'$ (resp. $Y'$) the base change to $S'$. If $X$ is étale over $S$, then the map
is bijective.
Proof. After base changing via $Y \to S$, we may assume that $Y = S$. Thus we may and do assume both $X$ and $Y$ are étale over $S$. In other words, the theorem states that the base change functor is a fully faithful functor from the category of schemes étale over $S$ to the category of schemes étale over $S'$.
Consider the forgetful functor
We claim this functor is an equivalence. On the other hand, the functor
is fully faithful by Étale Morphisms, Lemma 41.20.3. Thus the claim implies the theorem.
Proof of the claim. Recall that a universal homeomorphism is the same thing as an integral, universally injective, surjective morphism, see Morphisms, Lemma 29.45.5. In particular, the diagonal $\Delta : S' \to S' \times _ S S'$ is a thickening by Morphisms, Lemma 29.10.2. Thus by Étale Morphisms, Theorem 41.15.1 we see that given $X' \to S'$ étale there is a unique isomorphism
of schemes étale over $S' \times _ S S'$ which pulls back under $\Delta $ to $\text{id} : X' \to X'$ over $S'$. Since $S' \to S' \times _ S S' \times _ S S'$ is a thickening as well (it is bijective and a closed immersion) we conclude that $(X', \varphi ')$ is a descent datum relative to $S'/S$. The canonical nature of the construction of $\varphi '$ shows that it is compatible with morphisms between schemes étale over $S'$. In other words, we obtain a quasi-inverse $X' \mapsto (X', \varphi ')$ of the functor (59.45.1.1). This proves the claim and finishes the proof of the theorem. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)