The Stacks project

Lemma 49.9.7. Let $f : Y \to X$ be a flat quasi-finite morphism of Noetherian schemes. Let $R \subset Y$ be the closed subscheme defined by $\mathfrak {D}_ f$.

  1. If $\omega _{Y/X}$ is invertible, then $R$ is a locally principal closed subscheme of $Y$.

  2. If $\omega _{Y/X}$ is invertible and $f$ is finite, then the norm of $R$ is the discriminant $D_ f$ of $f$.

  3. If $\omega _{Y/X}$ is invertible and $f$ is étale at the associated points of $Y$, then $R$ is an effective Cartier divisor and there is an isomorphism $\mathcal{O}_ Y(R) = \omega _{Y/X}$.

Proof. Proof of (1). We may work locally on $Y$, hence we may assume $\omega _{Y/X}$ is free of rank $1$. Say $\omega _{Y/X} = \mathcal{O}_ Y\lambda $. Then we can write $\tau _{Y/X} = h \lambda $ and then we see that $R$ is defined by $h$, i.e., $R$ is locally principal.

Proof of (2). We may assume $Y \to X$ is given by a finite free ring map $A \to B$ and that $\omega _{B/A}$ is free of rank $1$ as $B$-module. Choose a $B$-basis element $\lambda $ for $\omega _{B/A}$ and write $\text{Trace}_{B/A} = b \cdot \lambda $ for some $b \in B$. Then $\mathfrak {D}_{B/A} = (b)$ and $D_ f$ is cut out by $\det (\text{Trace}_{B/A}(b_ ib_ j))$ where $b_1, \ldots , b_ n$ is a basis of $B$ as an $A$-module. Let $b_1^\vee , \ldots , b_ n^\vee $ be the dual basis. Writing $b_ i^\vee = c_ i \cdot \lambda $ we see that $c_1, \ldots , c_ n$ is a basis of $B$ as well. Hence with $c_ i = \sum a_{il}b_ l$ we see that $\det (a_{il})$ is a unit in $A$. Clearly, $b \cdot b_ i^\vee = c_ i \cdot \text{Trace}_{B/A}$ hence we conclude from the computation in the proof of Lemma 49.9.5 that $\text{Norm}_{B/A}(b)$ is a unit times $\det (\text{Trace}_{B/A}(b_ ib_ j))$.

Proof of (3). In the notation above we see from Lemma 49.9.6 and the assumption that $h$ does not vanish in the associated points of $Y$, which implies that $h$ is a nonzerodivisor. The canonical isomorphism sends $1$ to $\tau _{Y/X}$, see Divisors, Lemma 31.14.10. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BWA. Beware of the difference between the letter 'O' and the digit '0'.