Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Example 49.12.5. Let $A$ be a Noetherian ring. Let $f, h \in A[x]$ such that

\[ B = (A[x]/(f))_ h = A[x, 1/h]/(f) \]

is quasi-finite over $A$. Let $f' \in A[x]$ be the derivative of $f$ with respect to $x$. The ideal $\mathfrak {D} = (f') \subset B$ is the Noether different of $B$ over $A$, is the Kähler different of $B$ over $A$, and is the ideal whose associated quasi-coherent sheaf of ideals is the different of $\mathop{\mathrm{Spec}}(B)$ over $\mathop{\mathrm{Spec}}(A)$.


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.