The Stacks project

Lemma 49.12.6. Let $S$ be a Noetherian scheme. Let $X$, $Y$ be smooth schemes of relative dimension $n$ over $S$. Let $f : Y \to X$ be a locally quasi-finite morphism over $S$. Then $f$ is flat and the closed subscheme $R \subset Y$ cut out by the different of $f$ is the locally principal closed subscheme cut out by

\[ \wedge ^ n(\text{d}f) \in \Gamma (Y, (f^*\Omega ^ n_{X/S})^{\otimes -1} \otimes _{\mathcal{O}_ Y} \Omega ^ n_{Y/S}) \]

If $f$ is étale at the associated points of $Y$, then $R$ is an effective Cartier divisor and

\[ f^*\Omega ^ n_{X/S} \otimes _{\mathcal{O}_ Y} \mathcal{O}(R) = \Omega ^ n_{Y/S} \]

as invertible sheaves on $Y$.

Proof. To prove that $f$ is flat, it suffices to prove $Y_ s \to X_ s$ is flat for all $s \in S$ (More on Morphisms, Lemma 37.16.3). Flatness of $Y_ s \to X_ s$ follows from Algebra, Lemma 10.128.1. By More on Morphisms, Lemma 37.62.10 the morphism $f$ is a local complete intersection morphism. Thus the statement on the different follows from the corresponding statement on the Kähler different by Lemma 49.12.3. Finally, since we have the exact sequence

\[ f^*\Omega _{X/S} \xrightarrow {\text{d}f} \Omega _{Y/S} \to \Omega _{Y/X} \to 0 \]

by Morphisms, Lemma 29.32.9 and since $\Omega _{X/S}$ and $\Omega _{Y/S}$ are finite locally free of rank $n$ (Morphisms, Lemma 29.34.12), the statement for the Kähler different is clear from the definition of the zeroth fitting ideal. If $f$ is étale at the associated points of $Y$, then $\wedge ^ n\text{d}f$ does not vanish in the associated points of $Y$, which implies that the local equation of $R$ is a nonzerodivisor. Hence $R$ is an effective Cartier divisor. The canonical isomorphism sends $1$ to $\wedge ^ n\text{d}f$, see Divisors, Lemma 31.14.10. $\square$


Comments (3)

Comment #7485 by Hao Peng on

The central term of the exact sequence should by

Comment #7486 by Hao Peng on

Borrowing drom differential geometry, would it be better to use instead if ?


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BWJ. Beware of the difference between the letter 'O' and the digit '0'.