Lemma 53.8.2. Let $k'/k$ be a field extension. Let $X$ be a proper scheme over $k$ having dimension $1$ and $H^0(X, \mathcal{O}_ X) = k$. Then $X_{k'}$ is a proper scheme over $k'$ having dimension $1$ and $H^0(X_{k'}, \mathcal{O}_{X_{k'}}) = k'$. Moreover the genus of $X_{k'}$ is equal to the genus of $X$.

Proof. The dimension of $X_{k'}$ is $1$ for example by Morphisms, Lemma 29.28.3. The morphism $X_{k'} \to \mathop{\mathrm{Spec}}(k')$ is proper by Morphisms, Lemma 29.41.5. The equality $H^0(X_{k'}, \mathcal{O}_{X_{k'}}) = k'$ follows from Cohomology of Schemes, Lemma 30.5.2. The equality of the genus follows from the same lemma. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BY9. Beware of the difference between the letter 'O' and the digit '0'.