Lemma 15.59.6. Let $R$ be a ring. Let $0 \to K_1^\bullet \to K_2^\bullet \to K_3^\bullet \to 0$ be a short exact sequence of complexes. If $K_3^ n$ is flat for all $n \in \mathbf{Z}$ and two out of three of $K_ i^\bullet$ are K-flat, so is the third.

Proof. Let $L^\bullet$ be a complex of $R$-modules. Then

$0 \to \text{Tot}(L^\bullet \otimes _ R K_1^\bullet ) \to \text{Tot}(L^\bullet \otimes _ R K_2^\bullet ) \to \text{Tot}(L^\bullet \otimes _ R K_3^\bullet ) \to 0$

is a short exact sequence of complexes. Namely, for each $n, m$ the sequence of modules $0 \to L^ n \otimes _ R K_1^ m \to L^ n \otimes _ R K_2^ m \to L^ n \otimes _ R K_3^ m \to 0$ is exact by Algebra, Lemma 10.39.12 and the sequence of complexes is a direct sum of these. Thus the lemma follows from this and the fact that in a short exact sequence of complexes if two out of three are acyclic, so is the third. $\square$

There are also:

• 4 comment(s) on Section 15.59: Derived tensor product

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).