The Stacks project

Lemma 15.66.4. Let $R$ be a ring. Let $a \in \mathbf{Z}$ and let $K$ be an object of $D(R)$. The following are equivalent

  1. $K$ has tor-amplitude in $[a, \infty ]$, and

  2. $K$ is quasi-isomorphic to a K-flat complex $E^\bullet $ whose terms are flat $R$-modules with $E^ i = 0$ for $i \not\in [a, \infty ]$.

Proof. The implication (2) $\Rightarrow $ (1) is immediate. Assume (1) holds. First we choose a K-flat complex $K^\bullet $ with flat terms representing $K$, see Lemma 15.59.10. For any $R$-module $M$ the cohomology of

\[ K^{n - 1} \otimes _ R M \to K^ n \otimes _ R M \to K^{n + 1} \otimes _ R M \]

computes $H^ n(K \otimes _ R^\mathbf {L} M)$. This is always zero for $n < a$. Hence if we apply Lemma 15.66.2 to the complex $\ldots \to K^{a - 1} \to K^ a \to K^{a + 1}$ we conclude that $N = \mathop{\mathrm{Coker}}(K^{a - 1} \to K^ a)$ is a flat $R$-module. We set

\[ E^\bullet = \tau _{\geq a}K^\bullet = (\ldots \to 0 \to N \to K^{a + 1} \to \ldots ) \]

The kernel $L^\bullet $ of $K^\bullet \to E^\bullet $ is the complex

\[ L^\bullet = (\ldots \to K^{a - 1} \to I \to 0 \to \ldots ) \]

where $I \subset K^ a$ is the image of $K^{a - 1} \to K^ a$. Since we have the short exact sequence $0 \to I \to K^ a \to N \to 0$ we see that $I$ is a flat $R$-module. Thus $L^\bullet $ is a bounded above complex of flat modules, hence K-flat by Lemma 15.59.7. It follows that $E^\bullet $ is K-flat by Lemma 15.59.6. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 15.66: Tor dimension

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BYL. Beware of the difference between the letter 'O' and the digit '0'.