Lemma 58.16.2. Let f : X \to S be a proper morphism with geometrically connected fibres. Let s'' \leadsto s' \leadsto s be specializations of points of S. A composition of specialization maps \pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}'}) \to \pi _1(X_{\overline{s}}) is a specialization map \pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}}).
Proof. Let \mathcal{O}_{S, s} \to A be the strict henselization constructed using \kappa (s) \to \kappa (\overline{s}). Let A \to \kappa (\overline{s}') be the map used to construct the first specialization map. Let \mathcal{O}_{S, s'} \to A' be the strict henselization constructed using \kappa (s') \subset \kappa (\overline{s}'). By functoriality of strict henselization, there is a map A \to A' such that the composition with A' \to \kappa (\overline{s}') is the given map (Algebra, Lemma 10.154.6). Next, let A' \to \kappa (\overline{s}'') be the map used to construct the second specialization map. Then it is clear that the composition of the first and second specialization maps is the specialization map \pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}}) constructed using A \to A' \to \kappa (\overline{s}''). \square
Comments (0)