The Stacks project

Lemma 31.10.2. Let $f : X \to S$ be a morphism of schemes which is locally of finite type. The closed subscheme $Z \subset X$ cut out by the $0$th fitting ideal of $\Omega _{X/S}$ is exactly the set of points where $f$ is not unramified.

Proof. By Lemma 31.9.3 the complement of $Z$ is exactly the locus where $\Omega _{X/S}$ is zero. This is exactly the set of points where $f$ is unramified by Morphisms, Lemma 29.35.2. $\square$

Comments (0)

There are also:

  • 5 comment(s) on Section 31.10: The singular locus of a morphism

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C3J. Beware of the difference between the letter 'O' and the digit '0'.