Lemma 29.40.3. Let $f : X \to Y$ and $g : Y \to S$ be morphisms of schemes. If $S$ is quasi-compact and $f$ and $g$ are quasi-projective, then $g \circ f$ is quasi-projective.
Lemma 29.40.3. Let $f : X \to Y$ and $g : Y \to S$ be morphisms of schemes. If $S$ is quasi-compact and $f$ and $g$ are quasi-projective, then $g \circ f$ is quasi-projective.
Proof. This follows from Lemmas 29.15.3 and 29.37.8. $\square$
Comments (0)