Lemma 31.36.2. Let S be a scheme. Let X, Y be schemes over S. Assume X is Noetherian and Y is proper over S. Given an S-rational map f : U \to Y from X to Y there exists a morphism p : X' \to X and an S-morphism f' : X' \to Y such that
p is proper and p^{-1}(U) \to U is an isomorphism,
f'|_{p^{-1}(U)} is equal to f \circ p|_{p^{-1}(U)}.
Comments (0)