Lemma 55.9.8. In Situation 55.9.3 set $d = \gcd (m_1, \ldots , m_ n)$ and let $D = \sum (m_ i/d)C_ i$ as an effective Cartier divisor. Then $\mathcal{O}_ X(D)$ has order dividing $d$ in $\mathop{\mathrm{Pic}}\nolimits (X)$ and $\mathcal{C}_{D/X}$ an invertible $\mathcal{O}_ D$-module of order dividing $d$ in $\mathop{\mathrm{Pic}}\nolimits (D)$.

**Proof.**
We have

\[ \mathcal{O}_ X(D)^{\otimes d} = \mathcal{O}_ X(dD) = \mathcal{O}_ X(X_ k) = \mathcal{O}_ X \]

by Lemma 55.9.1. We conclude as $\mathcal{C}_{D/X}$ is the pullback of $\mathcal{O}_ X(-D)$. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)