The Stacks project

37.4 Picard groups of thickenings

Some material on Picard groups of thickenings.

Lemma 37.4.1. Let $X \subset X'$ be a first order thickening with ideal sheaf $\mathcal{I}$. Then there is a canonical exact sequence

\[ \xymatrix{ 0 \ar[r] & H^0(X, \mathcal{I}) \ar[r] & H^0(X', \mathcal{O}_{X'}^*) \ar[r] & H^0(X, \mathcal{O}^*_ X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\ & H^1(X, \mathcal{I}) \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X') \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\ & H^2(X, \mathcal{I}) \ar[r] & \ldots \ar[r] & \ldots } \]

of abelian groups.

Proof. This is the long exact cohomology sequence associated to the short exact sequence of sheaves of abelian groups

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'}^* \to \mathcal{O}_ X^* \to 0 \]

where the first map sends a local section $f$ of $\mathcal{I}$ to the invertible section $1 + f$ of $\mathcal{O}_{X'}$. We also use the identification of the Picard group of a ringed space with the first cohomology group of the sheaf of invertible functions, see Cohomology, Lemma 20.6.1. $\square$

Lemma 37.4.2. Let $X \subset X'$ be a thickening. Let $n$ be an integer invertible in $\mathcal{O}_ X$. Then the map $\mathop{\mathrm{Pic}}\nolimits (X')[n] \to \mathop{\mathrm{Pic}}\nolimits (X)[n]$ is bijective.

Proof for a finite order thickening. By the general principle explained following Definition 37.2.1 this reduces to the case of a first order thickening. Then may use Lemma 37.4.1 to see that it suffices to show that $H^1(X, \mathcal{I})[n]$, $H^1(X, \mathcal{I})/n$, and $H^2(X, \mathcal{I})[n]$ are zero. This follows as multiplication by $n$ on $\mathcal{I}$ is an isomorphism as it is an $\mathcal{O}_ X$-module. $\square$

Proof in general. Let $\mathcal{I} \subset \mathcal{O}_{X'}$ be the quasi-coherent ideal sheaf cutting out $X$. Then we have a short exact sequence of abelian groups

\[ 0 \to (1 + \mathcal{I})^* \to \mathcal{O}_{X'}^* \to \mathcal{O}_ X^* \to 0 \]

We obtain a long exact cohomology sequence as in the statement of Lemma 37.4.1 with $H^ i(X, \mathcal{I})$ replaced by $H^ i(X, (1 + \mathcal{I})^*)$. Thus it suffices to show that raising to the $n$th power is an isomorphism $(1 + \mathcal{I})^* \to (1 + \mathcal{I})^*$. Taking sections over affine opens this follows from Algebra, Lemma 10.32.8. $\square$


Comments (1)

Comment #9740 by Fiasco on

How to prove the injectivity of Lemma37.4.2? If we assume is surjective, then it suffices to show is injective by Kummer sequence for etale cohomology.

Since , and are zero, we have and similarly for etale base change. So we have as etale sheaves, where .

Finally we get the desired injection by the spectral sequence


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C6Q. Beware of the difference between the letter 'O' and the digit '0'.