Lemma 37.4.1. Let $X \subset X'$ be a first order thickening with ideal sheaf $\mathcal{I}$. Then there is a canonical exact sequence

of abelian groups.

Lemma 37.4.1. Let $X \subset X'$ be a first order thickening with ideal sheaf $\mathcal{I}$. Then there is a canonical exact sequence

\[ \xymatrix{ 0 \ar[r] & H^0(X, \mathcal{I}) \ar[r] & H^0(X', \mathcal{O}_{X'}^*) \ar[r] & H^0(X, \mathcal{O}^*_ X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\ & H^1(X, \mathcal{I}) \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X') \ar[r] & \mathop{\mathrm{Pic}}\nolimits (X) \ar `r[d] `d[l] `l[llld] `d[dll] [dll] \\ & H^2(X, \mathcal{I}) \ar[r] & \ldots \ar[r] & \ldots } \]

of abelian groups.

**Proof.**
This is the long exact cohomology sequence associated to the short exact sequence of sheaves of abelian groups

\[ 0 \to \mathcal{I} \to \mathcal{O}_{X'}^* \to \mathcal{O}_ X^* \to 0 \]

where the first map sends a local section $f$ of $\mathcal{I}$ to the invertible section $1 + f$ of $\mathcal{O}_{X'}$. We also use the identification of the Picard group of a ringed space with the first cohomology group of the sheaf of invertible functions, see Cohomology, Lemma 20.6.1. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)