The Stacks project

55.4 The Picard group of a numerical type

Here is the definition.

Definition 55.4.1. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. The Picard group of $T$ is the cokernel of the matrix $(a_{ij}/w_ i)$, more precisely

\[ \mathop{\mathrm{Pic}}\nolimits (T) = \mathop{\mathrm{Coker}}\left( \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n},\quad e_ i \mapsto \sum \frac{a_{ij}}{w_ j}e_ j \right) \]

where $e_ i$ denotes the $i$th standard basis vector for $\mathbf{Z}^{\oplus n}$.

Lemma 55.4.2. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. The Picard group of $T$ is a finitely generated abelian group of rank $1$.

Proof. If $n = 1$, then $A = (a_{ij})$ is the zero matrix and the result is clear. For $n > 1$ the matrix $A$ has rank $n - 1$ by either Lemma 55.2.2 or Lemma 55.2.3. Of course the rank is not affected by scaling the rows by $1/w_ i$. This proves the lemma. $\square$

Lemma 55.4.3. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. Then $\mathop{\mathrm{Pic}}\nolimits (T) \subset \mathop{\mathrm{Coker}}(A)$ where $A = (a_{ij})$.

Proof. Since $\mathop{\mathrm{Pic}}\nolimits (T)$ is the cokernel of $(a_{ij}/w_ i)$ we see that there is a commutative diagram

\[ \xymatrix{ 0 \ar[r] & \mathbf{Z}^{\oplus n} \ar[rr]_ A & & \mathbf{Z}^{\oplus n} \ar[rr] & & \mathop{\mathrm{Coker}}(A) \ar[r] & 0 \\ 0 \ar[r] & \mathbf{Z}^{\oplus n} \ar[rr]^{(a_{ij}/w_ i)} \ar[u]_{\text{id}} & & \mathbf{Z}^{\oplus n} \ar[rr] \ar[u]_{\text{diag}(w_1, \ldots , w_ n)} & & \mathop{\mathrm{Pic}}\nolimits (T) \ar[r] \ar[u] & 0 } \]

with exact rows. By the snake lemma we conclude that $\mathop{\mathrm{Pic}}\nolimits (T) \subset \mathop{\mathrm{Coker}}(A)$. $\square$

Lemma 55.4.4. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. Assume $n$ is a $(-1)$-index. Let $T'$ be the numerical type constructed in Lemma 55.3.9. There exists an injective map

\[ \mathop{\mathrm{Pic}}\nolimits (T) \to \mathop{\mathrm{Pic}}\nolimits (T') \]

whose cokernel is an elementary abelian $2$-group.

Proof. Recall that $n' = n - 1$. Let $e_ i$, resp., $e'_ i$ be the $i$th basis vector of $\mathbf{Z}^{\oplus n}$, resp. $\mathbf{Z}^{\oplus n - 1}$. First we denote

\[ q : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n - 1}, \quad e_ n \mapsto 0\text{ and }e_ i \mapsto e'_ i\text{ for }i \leq n - 1 \]

and we set

\[ p : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n - 1},\quad e_ n \mapsto \sum \nolimits _{j = 1}^{n - 1} \frac{a_{nj}}{w'_ j} e'_ j \text{ and } e_ i \mapsto \frac{w_ i}{w'_ i} e'_ i\text{ for }i \leq n - 1 \]

A computation (which we omit) shows there is a commutative diagram

\[ \xymatrix{ \mathbf{Z}^{\oplus n} \ar[rr]_{(a_{ij}/w_ i)} \ar[d]_ q & & \mathbf{Z}^{\oplus n} \ar[d]^ p \\ \mathbf{Z}^{\oplus n'} \ar[rr]^{(a'_{ij}/w'_ i)} & & \mathbf{Z}^{\oplus n'} } \]

Since the cokernel of the top arrow is $\mathop{\mathrm{Pic}}\nolimits (T)$ and the cokernel of the bottom arrow is $\mathop{\mathrm{Pic}}\nolimits (T')$, we obtain the desired homomorphism of Picard groups. Since $\frac{w_ i}{w'_ i} \in \{ 1, 2\} $ we see that the cokernel of $\mathop{\mathrm{Pic}}\nolimits (T) \to \mathop{\mathrm{Pic}}\nolimits (T')$ is annihilated by $2$ (because $2e'_ i$ is in the image of $p$ for all $i \leq n - 1$). Finally, we show $\mathop{\mathrm{Pic}}\nolimits (T) \to \mathop{\mathrm{Pic}}\nolimits (T')$ is injective. Let $L = (l_1, \ldots , l_ n)$ be a representative of an element of $\mathop{\mathrm{Pic}}\nolimits (T)$ mapping to zero in $\mathop{\mathrm{Pic}}\nolimits (T')$. Since $q$ is surjective, a diagram chase shows that we can assume $L$ is in the kernel of $p$. This means that $l_ na_{ni}/w'_ i + l_ iw_ i/w'_ i = 0$, i.e., $l_ i = - a_{ni}/w_ i l_ n$. Thus $L$ is the image of $-l_ ne_ n$ under the map $(a_{ij}/w_ j)$ and the lemma is proved. $\square$

Lemma 55.4.5. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. If the genus $g$ of $T$ is $\leq 0$, then $\mathop{\mathrm{Pic}}\nolimits (T) = \mathbf{Z}$.

Proof. By induction on $n$. If $n = 1$, then the assertion is clear. If $n > 1$, then $T$ is not minimal by Lemma 55.3.13. After replacing $T$ by an equivalent type we may assume $n$ is a $(-1)$-index. By Lemma 55.4.4 we find $\mathop{\mathrm{Pic}}\nolimits (T) \subset \mathop{\mathrm{Pic}}\nolimits (T')$. By Lemma 55.3.9 we see that the genus of $T'$ is equal to the genus of $T$ and we conclude by induction. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C7G. Beware of the difference between the letter 'O' and the digit '0'.