Lemma 55.13.2. In Situation 55.9.3 let T be the numerical type associated to X. There exists a canonical map
\mathop{\mathrm{Pic}}\nolimits (C) \to \mathop{\mathrm{Pic}}\nolimits (T)
whose kernel is exactly those invertible modules on C which are the restriction of invertible modules \mathcal{L} on X with \deg _{C_ i}(\mathcal{L}|_{C_ i}) = 0 for i = 1, \ldots , n.
Proof.
Recall that w_ i = [\kappa _ i : k] where \kappa _ i = H^0(C_ i, \mathcal{O}_{C_ i)}) and recall that the degree of any invertible module on C_ i is divisible by w_ i (Varieties, Lemma 33.44.10). Thus we can consider the map
\frac{\deg }{w} : \mathop{\mathrm{Pic}}\nolimits (X) \to \mathbf{Z}^{\oplus n}, \quad \mathcal{L} \mapsto (\frac{\deg (\mathcal{L}|_{C_1})}{w_1}, \ldots , \frac{\deg (\mathcal{L}|_{C_ n})}{w_ n})
The image of \mathcal{O}_ X(C_ j) under this map is
((C_ j \cdot C_1)/w_1, \ldots , (C_ j \cdot C_ n)/w_ n) = (a_{1j}/w_1, \ldots , a_{nj}/w_ n)
which is exactly the image of the jth basis vector under the map (a_{ij}/w_ i) : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n} defining the Picard group of T, see Definition 55.4.1. Thus the canonical map of the lemma comes from the commutative diagram
\xymatrix{ \mathbf{Z}^{\oplus n} \ar[r] \ar[d]_{\text{id}} & \mathop{\mathrm{Pic}}\nolimits (X) \ar[r] \ar[d]^{\frac{\deg }{w}} & \mathop{\mathrm{Pic}}\nolimits (C) \ar[r] \ar[d] & 0 \\ \mathbf{Z}^{\oplus n} \ar[r]^{(a_{ij}/w_ i)} & \mathbf{Z}^{\oplus n} \ar[r] & \mathop{\mathrm{Pic}}\nolimits (T) \ar[r] & 0 }
with exact rows (top row by Lemma 55.9.5). The description of the kernel is clear.
\square
Comments (0)