55.13 Picard groups of models
Assume R, K, k, \pi , C, X, n, C_1, \ldots , C_ n, m_1, \ldots , m_ n are as in Situation 55.9.3. In Lemma 55.9.5 we found an exact sequence
0 \to \mathbf{Z} \to \mathbf{Z}^{\oplus n} \to \mathop{\mathrm{Pic}}\nolimits (X) \to \mathop{\mathrm{Pic}}\nolimits (C) \to 0
We want to use this sequence to study the \ell -torsion in the Picard groups for suitable primes \ell .
Lemma 55.13.1. In Situation 55.9.3 let d = \gcd (m_1, \ldots , m_ n). If \mathcal{L} is an invertible \mathcal{O}_ X-module which
restricts to the trivial invertible module on C, and
has degree 0 on each C_ i,
then \mathcal{L}^{\otimes d} \cong \mathcal{O}_ X.
Proof.
By Lemma 55.9.5 we have \mathcal{L} \cong \mathcal{O}_ X(\sum a_ i C_ i) for some a_ i \in \mathbf{Z}. The degree of \mathcal{L}|_{C_ j} is \sum _ j a_ j(C_ i \cdot C_ j). In particular (\sum a_ i C_ i \cdot \sum a_ i C_ i) = 0. Hence we see from Lemma 55.9.7 that (a_1, \ldots , a_ n) = q(m_1, \ldots , m_ n) for some q \in \mathbf{Q}. Thus \mathcal{L} = \mathcal{O}_ X(lD) for some l \in \mathbf{Z} where D = \sum (m_ i/d) C_ i is as in Lemma 55.9.8 and we conclude.
\square
Lemma 55.13.2. In Situation 55.9.3 let T be the numerical type associated to X. There exists a canonical map
\mathop{\mathrm{Pic}}\nolimits (C) \to \mathop{\mathrm{Pic}}\nolimits (T)
whose kernel is exactly those invertible modules on C which are the restriction of invertible modules \mathcal{L} on X with \deg _{C_ i}(\mathcal{L}|_{C_ i}) = 0 for i = 1, \ldots , n.
Proof.
Recall that w_ i = [\kappa _ i : k] where \kappa _ i = H^0(C_ i, \mathcal{O}_{C_ i)}) and recall that the degree of any invertible module on C_ i is divisible by w_ i (Varieties, Lemma 33.44.10). Thus we can consider the map
\frac{\deg }{w} : \mathop{\mathrm{Pic}}\nolimits (X) \to \mathbf{Z}^{\oplus n}, \quad \mathcal{L} \mapsto (\frac{\deg (\mathcal{L}|_{C_1})}{w_1}, \ldots , \frac{\deg (\mathcal{L}|_{C_ n})}{w_ n})
The image of \mathcal{O}_ X(C_ j) under this map is
((C_ j \cdot C_1)/w_1, \ldots , (C_ j \cdot C_ n)/w_ n) = (a_{1j}/w_1, \ldots , a_{nj}/w_ n)
which is exactly the image of the jth basis vector under the map (a_{ij}/w_ i) : \mathbf{Z}^{\oplus n} \to \mathbf{Z}^{\oplus n} defining the Picard group of T, see Definition 55.4.1. Thus the canonical map of the lemma comes from the commutative diagram
\xymatrix{ \mathbf{Z}^{\oplus n} \ar[r] \ar[d]_{\text{id}} & \mathop{\mathrm{Pic}}\nolimits (X) \ar[r] \ar[d]^{\frac{\deg }{w}} & \mathop{\mathrm{Pic}}\nolimits (C) \ar[r] \ar[d] & 0 \\ \mathbf{Z}^{\oplus n} \ar[r]^{(a_{ij}/w_ i)} & \mathbf{Z}^{\oplus n} \ar[r] & \mathop{\mathrm{Pic}}\nolimits (T) \ar[r] & 0 }
with exact rows (top row by Lemma 55.9.5). The description of the kernel is clear.
\square
Lemma 55.13.3. In Situation 55.9.3 let d = \gcd (m_1, \ldots , m_ n) and let T be the numerical type associated to X. Let h \geq 1 be an integer prime to d. There exists an exact sequence
0 \to \mathop{\mathrm{Pic}}\nolimits (X)[h] \to \mathop{\mathrm{Pic}}\nolimits (C)[h] \to \mathop{\mathrm{Pic}}\nolimits (T)[h]
Proof.
Taking h-torsion in the exact sequence of Lemma 55.9.5 we obtain the exactness of 0 \to \mathop{\mathrm{Pic}}\nolimits (X)[h] \to \mathop{\mathrm{Pic}}\nolimits (C)[h] because h is prime to d. Using the map of Lemma 55.13.2 we get a map \mathop{\mathrm{Pic}}\nolimits (C)[h] \to \mathop{\mathrm{Pic}}\nolimits (T)[h] which annihilates elements of \mathop{\mathrm{Pic}}\nolimits (X)[h]. Conversely, if \xi \in \mathop{\mathrm{Pic}}\nolimits (C)[h] maps to zero in \mathop{\mathrm{Pic}}\nolimits (T)[h], then we can find an invertible \mathcal{O}_ X-module \mathcal{L} with \deg (\mathcal{L}|_{C_ i}) = 0 for all i whose restriction to C is \xi . Then \mathcal{L}^{\otimes h} is d-torsion by Lemma 55.13.1. Let d' be an integer such that dd' \equiv 1 \bmod h. Such an integer exists because h and d are coprime. Then \mathcal{L}^{\otimes dd'} is an h-torsion invertible sheaf on X whose restriction to C is \xi .
\square
Lemma 55.13.4. In Situation 55.9.3 let h be an integer prime to the characteristic of k. Then the map
\mathop{\mathrm{Pic}}\nolimits (X)[h] \longrightarrow \mathop{\mathrm{Pic}}\nolimits ((X_ k)_{red})[h]
is injective.
Proof.
Observe that X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n) is a finite order thickening of (X_ k)_{red} (this follows for example from Cohomology of Schemes, Lemma 30.10.2). Thus the canonical map \mathop{\mathrm{Pic}}\nolimits (X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n)) \to \mathop{\mathrm{Pic}}\nolimits ((X_ k)_{red}) identifies h torsion by More on Morphisms, Lemma 37.4.2 and our assumption on h. Thus if \mathcal{L} is an h-torsion invertible sheaf on X which restricts to the trivial sheaf on (X_ k)_{red} then \mathcal{L} restricts to the trivial sheaf on X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n) for all n. We find
\begin{align*} H^0(X, \mathcal{L})^\wedge & = \mathop{\mathrm{lim}}\nolimits H^0(X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n), \mathcal{L}|_{X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n)}) \\ & \cong \mathop{\mathrm{lim}}\nolimits H^0(X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n), \mathcal{O}_{X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n)}) \\ & = R^\wedge \end{align*}
using the theorem on formal functions (Cohomology of Schemes, Theorem 30.20.5) for the first and last equality and for example More on Algebra, Lemma 15.100.5 for the middle isomorphism. Since H^0(X, \mathcal{L}) is a finite R-module and R is a discrete valuation ring, this means that H^0(X, \mathcal{L}) is free of rank 1 as an R-module. Let s \in H^0(X, \mathcal{L}) be a basis element. Then tracing back through the isomorphisms above we see that s|_{X \times _{\mathop{\mathrm{Spec}}(R)} \mathop{\mathrm{Spec}}(R/\pi ^ n)} is a trivialization for all n. Since the vanishing locus of s is closed in X and X \to \mathop{\mathrm{Spec}}(R) is proper we conclude that the vanishing locus of s is empty as desired.
\square
Comments (0)