Situation 85.17.2. Let $P$ be a property of morphisms of $\textit{WAdm}^{count}$. Consider commutative diagrams

85.17.2.1
\begin{equation} \label{formal-spaces-equation-localize} \vcenter { \xymatrix{ A \ar[r] & (A')^\wedge \\ B \ar[r] \ar[u]^\varphi & (B')^\wedge \ar[u]_{\varphi '} } } \end{equation}

satisfying the following conditions

1. $A$ and $B$ are objects of $\textit{WAdm}^{count}$,

2. $A \to A'$ and $B \to B'$ are étale ring maps,

3. $(A')^\wedge = \mathop{\mathrm{lim}}\nolimits A'/IA'$, resp. $(B')^\wedge = \mathop{\mathrm{lim}}\nolimits B'/JB'$ where $I \subset A$, resp. $J \subset B$ runs through the weakly admissible ideals of definition of $A$, resp. $B$,

4. $\varphi : B \to A$ and $\varphi ' : (B')^\wedge \to (A')^\wedge$ are continuous.

By Lemma 85.17.1 the topological rings $(A')^\wedge$ and $(B')^\wedge$ are objects of $\textit{WAdm}^{count}$. We say $P$ is a local property if the following axioms hold:

1. for any diagram (85.17.2.1) we have $P(\varphi ) \Rightarrow P(\varphi ')$,

2. for any diagram (85.17.2.1) with $A \to A'$ faithfully flat we have $P(\varphi ') \Rightarrow P(\varphi )$,

3. if $P(B \to A_ i)$ for $i = 1, \ldots , n$, then $P(B \to \prod _{i = 1, \ldots , n} A_ i)$.

Axiom (3) makes sense as $\textit{WAdm}^{count}$ has finite products.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).