The Stacks project

Remark 85.16.7 (Warning). Suppose $X = \mathop{\mathrm{Spec}}(A)$ and $T \subset X$ is the zero locus of a finitely generated ideal $I \subset A$. Let $J = \sqrt{I}$ be the radical of $I$. Then from the definitions we see that $X_{/T} = \text{Spf}(A^\wedge )$ where $A^\wedge = \mathop{\mathrm{lim}}\nolimits A/I^ n$ is the $I$-adic completion of $A$. On the other hand, the map $A^\wedge \to \mathop{\mathrm{lim}}\nolimits A/J^ n$ from the $I$-adic completion to the $J$-adic completion can fail to be a ring isomorphisms. As an example let

\[ A = \bigcup \nolimits _{n \geq 1} \mathbf{C}[t^{1/n}] \]

and $I = (t)$. Then $J = \mathfrak m$ is the maximal ideal of the valuation ring $A$ and $J^2 = J$. Thus the $J$-adic completion of $A$ is $\mathbf{C}$ whereas the $I$-adic completion is the valuation ring described in Example 85.9.2 (but in particular it is easy to see that $A \subset A^\wedge $).

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CKX. Beware of the difference between the letter 'O' and the digit '0'.