The Stacks project

Lemma 69.22.1. Let $S$ be a scheme. Let $f : X \to Y$ and $h : U \to X$ be morphisms of algebraic spaces over $S$. Assume that $Y$ is locally Noetherian, that $f$ and $h$ are of finite type, that $f$ is separated, and that the image of $|h| : |U| \to |X|$ is dense in $|X|$. If given any commutative solid diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & U \ar[r]^ h & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(A) \ar[rr] \ar@{-->}[rru] & & Y } \]

where $A$ is a discrete valuation ring with field of fractions $K$, there exists a dotted arrow making the diagram commute, then $f$ is proper.

Proof. It suffices to prove that $f$ is universally closed. Let $V \to Y$ be an ├ętale morphism where $V$ is an affine scheme. By Morphisms of Spaces, Lemma 66.9.5 it suffices to prove that the base change $X \times _ Y V \to V$ is universally closed. By Properties of Spaces, Lemma 65.4.3 the image $I$ of $|U \times _ Y V| \to |X \times _ Y V|$ is the inverse image of the image of $|h|$. Since $|X \times _ Y V| \to |X|$ is open (Properties of Spaces, Lemma 65.16.7) we conclude that $I$ is dense in $|X \times _ Y V|$. Therefore the assumptions of the lemma are satisfied for the morphisms $U \times _ Y V \to X \times _ Y V \to V$. Hence we may assume $Y$ is an affine scheme.

Assume $Y$ is an affine scheme. Then $U$ is quasi-compact. Choose an affine scheme and a surjective ├ętale morphism $W \to U$. Then we may and do replace $U$ by $W$ and assume that $U$ is affine. By the weak version of Chow's lemma (Cohomology of Spaces, Lemma 68.18.1) we can choose a surjective proper morphism $X' \to X$ where $X'$ is a scheme. Then $U' = X' \times _ X U$ is a scheme and $U' \to X'$ is of finite type. We may replace $X'$ by the scheme theoretic image of $h' : U' \to X'$ and hence $h'(U')$ is dense in $X'$. We claim that for every diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & U' \ar[r]^ h & X' \ar[d]^{f'} \\ \mathop{\mathrm{Spec}}(A) \ar[rr] \ar@{-->}[rru] & & Y } \]

where $A$ is a discrete valuation ring with field of fractions $K$, there exists a dotted arrow making the diagram commute. Namely, we first get an arrow $\mathop{\mathrm{Spec}}(A) \to X$ by the assumption of the lemma and then we lift this to an arrow $\mathop{\mathrm{Spec}}(A) \to X'$ using the valuative criterion for properness (Morphisms of Spaces, Lemma 66.44.1). The morphism $X' \to Y$ is separated as a composition of a proper and a separated morphism. Thus by the case of schemes the morphism $X' \to Y$ is proper (Limits, Lemma 32.16.1). By Morphisms of Spaces, Lemma 66.40.7 we conclude that $X \to Y$ is proper. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CMD. Beware of the difference between the letter 'O' and the digit '0'.