The Stacks project

Lemma 101.14.5. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. The following are equivalent

  1. $f$ is universally injective,

  2. $\Delta : \mathcal{X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ is surjective, and

  3. for an algebraically closed field, for $x_1, x_2 : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$, and for a $2$-arrow $\beta : f \circ x_1 \to f \circ x_2$ there is a $2$-arrow $\alpha : x_1 \to x_2$ with $\beta = \text{id}_ f \star \alpha $.

Proof. (1) $\Rightarrow $ (2). If $f$ is universally injective, then the first projection $|\mathcal{X} \times _\mathcal {Y} \mathcal{X}| \to |\mathcal{X}|$ is injective, which implies that $|\Delta |$ is surjective.

(2) $\Rightarrow $ (1). Assume $\Delta $ is surjective. Then any base change of $\Delta $ is surjective (see Properties of Stacks, Section 100.5). Since the diagonal of a base change of $f$ is a base change of $\Delta $, we see that it suffices to show that $|\mathcal{X}| \to |\mathcal{Y}|$ is injective. If not, then by Properties of Stacks, Lemma 100.4.3 we find that the first projection $|\mathcal{X} \times _\mathcal {Y} \mathcal{X}| \to |\mathcal{X}|$ is not injective. Of course this means that $|\Delta |$ is not surjective.

(3) $\Rightarrow $ (2). Let $t \in |\mathcal{X} \times _\mathcal {Y} \mathcal{X}|$. Then we can represent $t$ by a morphism $t : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$ with $k$ an algebraically closed field. By our construction of $2$-fibre products we can represent $t$ by $(x_1, x_2, \beta )$ where $x_1, x_2 : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ and $\beta : f \circ x_1 \to f \circ x_2$ is a $2$-morphism. Then (3) implies that there is a $2$-morphism $\alpha : x_1 \to x_2$ mapping to $\beta $. This exactly means that $\Delta (x_1) = (x_1, x_1, \text{id})$ is isomorphic to $t$. Hence (2) holds.

(2) $\Rightarrow $ (3). Let $x_1, x_2 : \mathop{\mathrm{Spec}}(k) \to \mathcal{X}$ be morphisms with $k$ an algebraically closed field. Let $\beta : f \circ x_1 \to f \circ x_2$ be a $2$-morphism. As in the previous paragraph, we obtain a morphism $t = (x_1, x_2, \beta ) : \mathop{\mathrm{Spec}}(k) \to \mathcal{X} \times _\mathcal {Y} \mathcal{X}$. By Lemma 101.3.3

\[ T = \mathcal{X} \times _{\Delta , \mathcal{X} \times _\mathcal {Y} \mathcal{X}, t} \mathop{\mathrm{Spec}}(k) \]

is an algebraic space locally of finite type over $\mathop{\mathrm{Spec}}(k)$. Condition (2) implies that $T$ is nonempty. Then since $k$ is algebraically closed, there is a $k$-point in $T$. Unwinding the definitions this means there is a morphism $\alpha : x_1 \to x_2$ in $\mathop{\mathrm{Mor}}\nolimits (\mathop{\mathrm{Spec}}(k), \mathcal{X})$ such that $\beta = \text{id}_ f \star \alpha $. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CPN. Beware of the difference between the letter 'O' and the digit '0'.