Lemma 101.38.7. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks which is representable by algebraic spaces and separated. Let $\mathcal{V} \subset \mathcal{Y}$ be an open substack such that $\mathcal{V} \to \mathcal{Y}$ is quasi-compact. Let $s : \mathcal{V} \to \mathcal{X}$ be a morphism such that $f \circ s = \text{id}_\mathcal {V}$. Let $\mathcal{Y}'$ be the scheme theoretic image of $s$. Then $\mathcal{Y}' \to \mathcal{Y}$ is an isomorphism over $\mathcal{V}$.

Proof. By Lemma 101.7.7 the morphism $s : \mathcal{V} \to \mathcal{Y}$ is quasi-compact. Hence the construction of the scheme theoretic image $\mathcal{Y}'$ of $s$ commutes with flat base change by Lemma 101.38.5. Thus to prove the lemma we may assume $\mathcal{Y}$ is representable by an algebraic space and we reduce to the case of algebraic spaces which is Morphisms of Spaces, Lemma 67.16.7. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CPW. Beware of the difference between the letter 'O' and the digit '0'.