Lemma 66.16.7. Let $S$ be a scheme. Let $f : X \to Y$ be a separated morphism of algebraic spaces over $S$. Let $V \subset Y$ be an open subspace such that $V \to Y$ is quasi-compact. Let $s : V \to X$ be a morphism such that $f \circ s = \text{id}_ V$. Let $Y'$ be the scheme theoretic image of $s$. Then $Y' \to Y$ is an isomorphism over $V$.

**Proof.**
By Lemma 66.8.9 the morphism $s : V \to X$ is quasi-compact. Hence the construction of the scheme theoretic image $Y'$ of $s$ commutes with restriction to opens by Lemma 66.16.3. In particular, we see that $Y' \cap f^{-1}(V)$ is the scheme theoretic image of a section of the separated morphism $f^{-1}(V) \to V$. Since a section of a separated morphism is a closed immersion (Lemma 66.4.7), we conclude that $Y' \cap f^{-1}(V) \to V$ is an isomorphism as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #2306 by Luca on

Comment #2384 by Johan on