Lemma 66.16.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. There exists a closed subspace $Z \subset Y$ such that $f$ factors through $Z$ and such that for any other closed subspace $Z' \subset Y$ such that $f$ factors through $Z'$ we have $Z \subset Z'$.

## 66.16 Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently from what you might expect.

**Proof.**
Let $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{O}_ Y \to f_*\mathcal{O}_ X)$. If $\mathcal{I}$ is quasi-coherent then we just take $Z$ to be the closed subscheme determined by $\mathcal{I}$, see Lemma 66.13.1. In general the lemma requires us to show that there exists a largest quasi-coherent sheaf of ideals $\mathcal{I}'$ contained in $\mathcal{I}$. This follows from Lemma 66.14.2.
$\square$

Suppose that in the situation of Lemma 66.16.1 above $X$ and $Y$ are representable. Then the closed subspace $Z \subset Y$ found in the lemma agrees with the closed subscheme $Z \subset Y$ found in Morphisms, Lemma 29.6.1. The reason is that closed subspaces (or subschemes) are in a inclusion reversing correspondence with quasi-coherent ideal sheaves on $X_{\acute{e}tale}$ and $X$. As the category of quasi-coherent modules on $X_{\acute{e}tale}$ and $X$ are the same (Properties of Spaces, Section 65.29) we conclude. Thus the following definition agrees with the earlier definition for morphisms of schemes.

Definition 66.16.2. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. The *scheme theoretic image* of $f$ is the smallest closed subspace $Z \subset Y$ through which $f$ factors, see Lemma 66.16.1 above.

We often just denote $f : X \to Z$ the factorization of $f$. If the morphism $f$ is not quasi-compact, then (in general) the construction of the scheme theoretic image does not commute with restriction to open subspaces of $Y$.

Lemma 66.16.3. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Let $Z \subset Y$ be the scheme theoretic image of $f$. If $f$ is quasi-compact then

the sheaf of ideals $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{O}_ Y \to f_*\mathcal{O}_ X)$ is quasi-coherent,

the scheme theoretic image $Z$ is the closed subspace corresponding to $\mathcal{I}$,

for any étale morphism $V \to Y$ the scheme theoretic image of $X \times _ Y V \to V$ is equal to $Z \times _ Y V$, and

the image $|f|(|X|) \subset |Z|$ is a dense subset of $|Z|$.

**Proof.**
To prove (3) it suffices to prove (1) and (2) since the formation of $\mathcal{I}$ commutes with étale localization. If (1) holds then in the proof of Lemma 66.16.1 we showed (2). Let us prove that $\mathcal{I}$ is quasi-coherent. Since the property of being quasi-coherent is étale local we may assume $Y$ is an affine scheme. As $f$ is quasi-compact, we can find an affine scheme $U$ and a surjective étale morphism $U \to X$. Denote $f'$ the composition $U \to X \to Y$. Then $f_*\mathcal{O}_ X$ is a subsheaf of $f'_*\mathcal{O}_ U$, and hence $\mathcal{I} = \mathop{\mathrm{Ker}}(\mathcal{O}_ Y \to \mathcal{O}_{X'})$. By Lemma 66.11.2 the sheaf $f'_*\mathcal{O}_ U$ is quasi-coherent on $Y$. Hence $\mathcal{I}$ is quasi-coherent as a kernel of a map between coherent modules. Finally, part (4) follows from parts (1), (2), and (3) as the ideal $\mathcal{I}$ will be the unit ideal in any point of $|Y|$ which is not contained in the closure of $|f|(|X|)$.
$\square$

Lemma 66.16.4. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume $X$ is reduced. Then

the scheme theoretic image $Z$ of $f$ is the reduced induced algebraic space structure on $\overline{|f|(|X|)}$, and

for any étale morphism $V \to Y$ the scheme theoretic image of $X \times _ Y V \to V$ is equal to $Z \times _ Y V$.

**Proof.**
Part (1) is true because the reduced induced algebraic space structure on $\overline{|f|(|X|)}$ is the smallest closed subspace of $Y$ through which $f$ factors, see Properties of Spaces, Lemma 65.12.4. Part (2) follows from (1), the fact that $|V| \to |Y|$ is open, and the fact that being reduced is preserved under étale localization.
$\square$

Lemma 66.16.5. Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-compact morphism of algebraic spaces over $S$. Let $Z$ be the scheme theoretic image of $f$. Let $z \in |Z|$. There exists a valuation ring $A$ with fraction field $K$ and a commutative diagram

such that the closed point of $\mathop{\mathrm{Spec}}(A)$ maps to $z$.

**Proof.**
Choose an affine scheme $V$ with a point $z' \in V$ and an étale morphism $V \to Y$ mapping $z'$ to $z$. Let $Z' \subset V$ be the scheme theoretic image of $X \times _ Y V \to V$. By Lemma 66.16.3 we have $Z' = Z \times _ Y V$. Thus $z' \in Z'$. Since $f$ is quasi-compact and $V$ is affine we see that $X \times _ Y V$ is quasi-compact. Hence there exists an affine scheme $W$ and a surjective étale morphism $W \to X \times _ Y V$. Then $Z' \subset V$ is also the scheme theoretic image of $W \to V$. By Morphisms, Lemma 29.6.5 we can choose a diagram

such that the closed point of $\mathop{\mathrm{Spec}}(A)$ maps to $z'$. Composing with $Z' \to Z$ and $W \to X \times _ Y V \to X$ we obtain a solution. $\square$

Lemma 66.16.6. Let $S$ be a scheme. Let

be a commutative diagram of algebraic spaces over $S$. Let $Z_ i \subset Y_ i$, $i = 1, 2$ be the scheme theoretic image of $f_ i$. Then the morphism $Y_1 \to Y_2$ induces a morphism $Z_1 \to Z_2$ and a commutative diagram

**Proof.**
The scheme theoretic inverse image of $Z_2$ in $Y_1$ is a closed subspace of $Y_1$ through which $f_1$ factors. Hence $Z_1$ is contained in this. This proves the lemma.
$\square$

Lemma 66.16.7. Let $S$ be a scheme. Let $f : X \to Y$ be a separated morphism of algebraic spaces over $S$. Let $V \subset Y$ be an open subspace such that $V \to Y$ is quasi-compact. Let $s : V \to X$ be a morphism such that $f \circ s = \text{id}_ V$. Let $Y'$ be the scheme theoretic image of $s$. Then $Y' \to Y$ is an isomorphism over $V$.

**Proof.**
By Lemma 66.8.9 the morphism $s : V \to X$ is quasi-compact. Hence the construction of the scheme theoretic image $Y'$ of $s$ commutes with restriction to opens by Lemma 66.16.3. In particular, we see that $Y' \cap f^{-1}(V)$ is the scheme theoretic image of a section of the separated morphism $f^{-1}(V) \to V$. Since a section of a separated morphism is a closed immersion (Lemma 66.4.7), we conclude that $Y' \cap f^{-1}(V) \to V$ is an isomorphism as desired.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)