Lemma 13.4.13. Let \mathcal{D} be a pre-triangulated category. Let I be a set.
Let X_ i, i \in I be a family of objects of \mathcal{D}.
If \prod X_ i exists, then (\prod X_ i)[1] = \prod X_ i[1].
If \bigoplus X_ i exists, then (\bigoplus X_ i)[1] = \bigoplus X_ i[1].
Let X_ i \to Y_ i \to Z_ i \to X_ i[1] be a family of distinguished triangles of \mathcal{D}.
If \prod X_ i, \prod Y_ i, \prod Z_ i exist, then \prod X_ i \to \prod Y_ i \to \prod Z_ i \to \prod X_ i[1] is a distinguished triangle.
If \bigoplus X_ i, \bigoplus Y_ i, \bigoplus Z_ i exist, then \bigoplus X_ i \to \bigoplus Y_ i \to \bigoplus Z_ i \to \bigoplus X_ i[1] is a distinguished triangle.
Comments (0)
There are also: