Processing math: 100%

The Stacks project

Lemma 22.38.3. Let (A, \text{d}) be a differential graded algebra with H^ i(A) countable for each i. Let M be an object of D(A, \text{d}). Then the following are equivalent

  1. M = \text{hocolim} E_ n with E_ n compact in D(A, \text{d}), and

  2. H^ i(M) is countable for each i.

Proof. Assume (1) holds. Then we have H^ i(M) = \mathop{\mathrm{colim}}\nolimits H^ i(E_ n) by Derived Categories, Lemma 13.33.8. Thus it suffices to prove that H^ i(E_ n) is countable for each n. By Proposition 22.36.4 we see that E_ n is isomorphic in D(A, \text{d}) to a direct summand of a differential graded module P which has a finite filtration F_\bullet by differential graded submodules such that F_ jP/F_{j - 1}P are finite direct sums of shifts of A. By assumption the groups H^ i(F_ jP/F_{j - 1}P) are countable. Arguing by induction on the length of the filtration and using the long exact cohomology sequence we conclude that (2) is true. The interesting implication is the other one.

We claim there is a countable differential graded subalgebra A' \subset A such that the inclusion map A' \to A defines an isomorphism on cohomology. To construct A' we choose countable differential graded subalgebras

A_1 \subset A_2 \subset A_3 \subset \ldots

such that (a) H^ i(A_1) \to H^ i(A) is surjective, and (b) for n > 1 the kernel of the map H^ i(A_{n - 1}) \to H^ i(A_ n) is the same as the kernel of the map H^ i(A_{n - 1}) \to H^ i(A). To construct A_1 take any countable collection of cochains S \subset A generating the cohomology of A (as a ring or as a graded abelian group) and let A_1 be the differential graded subalgebra of A generated by S. To construct A_ n given A_{n - 1} for each cochain a \in A_{n - 1}^ i which maps to zero in H^ i(A) choose s_ a \in A^{i - 1} with \text{d}(s_ a) = a and let A_ n be the differential graded subalgebra of A generated by A_{n - 1} and the elements s_ a. Finally, take A' = \bigcup A_ n.

By Lemma 22.37.1 the restriction map D(A, \text{d}) \to D(A', \text{d}), M \mapsto M_{A'} is an equivalence. Since the cohomology groups of M and M_{A'} are the same, we see that it suffices to prove the implication (2) \Rightarrow (1) for (A', \text{d}).

Assume A is countable. By the exact same type of argument as given above we see that for M in D(A, \text{d}) the following are equivalent: H^ i(M) is countable for each i and M can be represented by a countable differential graded module. Hence in order to prove the implication (2) \Rightarrow (1) we reduce to the situation described in the next paragraph.

Assume A is countable and that M is a countable differential graded module over A. We claim there exists a homomorphism P \to M of differential graded A-modules such that

  1. P \to M is a quasi-isomorphism,

  2. P has property (P), and

  3. P is countable.

Looking at the proof of the construction of P-resolutions in Lemma 22.20.4 we see that it suffices to show that we can prove Lemma 22.20.3 in the setting of countable differential graded modules. This is immediate from the proof.

Assume that A is countable and that M is a countable differential graded module with property (P). Choose a filtration

0 = F_{-1}P \subset F_0P \subset F_1P \subset \ldots \subset P

by differential graded submodules such that we have

  1. P = \bigcup F_ pP,

  2. F_ iP \to F_{i + 1}P is an admissible monomorphism,

  3. isomorphisms of differential graded modules F_ iP/F_{i - 1}P \to \bigoplus _{j \in J_ i} A[k_ j] for some sets J_ i and integers k_ j.

Of course J_ i is countable for each i. For each i and j \in J_ i choose x_{i, j} \in F_ iP of degree k_ j whose image in F_ iP/F_{i - 1}P generates the summand corresponding to j.

Claim: Given n and finite subsets S_ i \subset J_ i, i = 1, \ldots , n there exist finite subsets S_ i \subset T_ i \subset J_ i, i = 1, \ldots , n such that P' = \bigoplus _{i \leq n} \bigoplus _{j \in T_ i} Ax_{i, j} is a differential graded submodule of P. This was shown in the proof of Lemma 22.36.3 but it is also easily shown directly: the elements x_{i, j} freely generate P as a right A-module. The structure of P shows that

\text{d}(x_{i, j}) = \sum \nolimits _{i' < i} x_{i', j'}a_{i', j'}

where of course the sum is finite. Thus given S_0, \ldots , S_ n we can first choose S_0 \subset S'_0, \ldots , S_{n - 1} \subset S'_{n - 1} with \text{d}(x_{n, j}) \in \bigoplus _{i' < n, j' \in S'_{i'}} x_{i', j'}A for all j \in S_ n. Then by induction on n we can choose S'_0 \subset T_0, \ldots , S'_{n - 1} \subset T_{n - 1} to make sure that \bigoplus _{i' < n, j' \in T_{i'}} x_{i', j'}A is a differential graded A-submodule. Setting T_ n = S_ n we find that P' = \bigoplus _{i \leq n, j \in T_ i} x_{i, j}A is as desired.

From the claim it is clear that P = \bigcup P'_ n is a countable rising union of P'_ n as above. By construction each P'_ n is a differential graded module with property (P) such that the filtration is finite and the successive quotients are finite direct sums of shifts of A. Hence P'_ n defines a compact object of D(A, \text{d}), see for example Proposition 22.36.4. Since P = \text{hocolim} P'_ n in D(A, \text{d}) by Lemma 22.23.2 the proof of the implication (2) \Rightarrow (1) is complete. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.