Remark 36.7.7 (Warning). Let $X$ be a quasi-compact scheme with affine diagonal. Even though we know that $D(\mathit{QCoh}(\mathcal{O}_ X)) = D_\mathit{QCoh}(\mathcal{O}_ X)$ by Proposition 36.7.5 strange things can happen and it is easy to make mistakes with this material. One pitfall is to carelessly assume that this equality means derived functors are the same. For example, suppose we have a quasi-compact open $U \subset X$. Then we can consider the higher right derived functors

$R^ i(\mathit{QCoh})\Gamma (U, -) : \mathit{QCoh}(\mathcal{O}_ X) \to \textit{Ab}$

of the left exact functor $\Gamma (U, -)$. Since this is a universal $\delta$-functor, and since the functors $H^ i(U, -)$ (defined for all abelian sheaves on $X$) restricted to $\mathit{QCoh}(\mathcal{O}_ X)$ form a $\delta$-functor, we obtain canonical transformations

$t^ i : R^ i(\mathit{QCoh})\Gamma (U, -) \to H^ i(U, -).$

These transformations aren't in general isomorphisms even if $X = \mathop{\mathrm{Spec}}(A)$ is affine! Namely, we have $R^1(\mathit{QCoh})\Gamma (U, \widetilde{I}) = 0$ if $I$ an injective $A$-module by construction of right derived functors and the equivalence of $\mathit{QCoh}(\mathcal{O}_ X)$ and $\text{Mod}_ A$. But Examples, Lemma 110.47.2 shows there exists $A$, $I$, and $U$ such that $H^1(U, \widetilde{I}) \not= 0$.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CRY. Beware of the difference between the letter 'O' and the digit '0'.