Lemma 37.70.2. Let $X \to T \to S$ be morphisms of schemes. Assume $T \to S$ is flat and locally of finite presentation and $X \to T$ locally of finite type. Let $E \in D(\mathcal{O}_ X)$. Let $m \in \mathbf{Z}$. Then $E$ is $m$-pseudo-coherent relative to $S$ if and only if $E$ is $m$-pseudo-coherent relative to $T$.
Proof. Locally on $X$ we can choose a closed immersion $i : X \to \mathbf{A}^ n_ T$. Then $\mathbf{A}^ n_ T \to S$ is flat and locally of finite presentation. Thus we may apply Lemma 37.59.17 to see the equivalence holds. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)