Lemma 37.67.1. Let $X \to S$ be locally of finite type. Let $\{ f_ i : X_ i \to X\}$ be an fppf covering of schemes. Let $E \in D_\mathit{QCoh}(\mathcal{O}_ X)$. Let $m \in \mathbf{Z}$. Then $E$ is $m$-pseudo-coherent relative to $S$ if and only if each $Lf_ i^*E$ is $m$-pseudo-coherent relative to $S$.

Proof. Assume $E$ is $m$-pseudo-coherent relative to $S$. The morphisms $f_ i$ are pseudo-coherent by Lemma 37.57.6. Hence $Lf_ i^*E$ is $m$-pseudo-coherent relative to $S$ by Lemma 37.56.16.

Conversely, assume that $Lf_ i^*E$ is $m$-pseudo-coherent relative to $S$ for each $i$. Pick $S = \bigcup U_ j$, $W_ j \to U_ j$, $W_ j = \bigcup W_{j, k}$, $T_{j, k} \to W_{j, k}$, and morphisms $\alpha _{j, k} : T_{j, k} \to X_{i(j, k)}$ over $S$ as in Lemma 37.47.2. Since the morphism $T_{j, K} \to S$ is flat and of finite presentation, we see that $\alpha _{j, k}$ is pseudo-coherent by Lemma 37.57.7. Hence

$L\alpha _{j, k}^*Lf_{i(j, k)}^*E = L(T_{i, k} \to S)^*E$

is $m$-pseudo-coherent relative to $S$ by Lemma 37.56.16. Now we want to descend this property through the coverings $\{ T_{j, k} \to W_{j, k}\}$, $W_ j = \bigcup W_{j, k}$, $\{ W_ j \to U_ j\}$, and $S = \bigcup U_ j$. Since for Zariski coverings the result is true (by the definition of $m$-pseudo-coherence relative to $S$), this means we may assume we have a single surjective finite locally free morphism $\pi : Y \to X$ such that $L\pi ^*E$ is pseudo-coherent relative to $S$. In this case $R\pi _*L\pi ^*E$ is pseudo-coherent relative to $S$ by Lemma 37.56.9 (this is the first time we use that $E$ has quasi-coherent cohomology sheaves). We have $R\pi _*L\pi ^*E = E \otimes ^\mathbf {L}_{\mathcal{O}_ X} \pi _*\mathcal{O}_ Y$ for example by Derived Categories of Schemes, Lemma 36.22.1 and locally on $X$ the map $\mathcal{O}_ X \to \pi _*\mathcal{O}_ Y$ is the inclusion of a direct summand. Hence we conclude by Lemma 37.56.12. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).