Lemma 71.2.3. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Then $\text{WeakAss}(\mathcal{F}) \subset \text{Supp}(\mathcal{F})$.
Proof. This is immediate from the definitions. The support of an abelian sheaf on $X$ is defined in Properties of Spaces, Definition 66.20.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)