Lemma 69.5.1. Let $S$ be a scheme. Let $X = \mathop{\mathrm{lim}}\nolimits _{i \in I} X_ i$ be the limit of a directed inverse system of algebraic spaces over $S$ with affine transition morphisms (Lemma 69.4.1). If each $X_ i$ is decent (for example quasi-separated or locally separated) then $|X| = \mathop{\mathrm{lim}}\nolimits _ i |X_ i|$ as sets.

**Proof.**
There is a canonical map $|X| \to \mathop{\mathrm{lim}}\nolimits |X_ i|$. Choose $0 \in I$. If $W_0 \subset X_0$ is an open subspace, then we have $f_0^{-1}W_0 = \mathop{\mathrm{lim}}\nolimits _{i \geq 0} f_{i0}^{-1}W_0$, see Lemma 69.4.1. Hence, if we can prove the lemma for inverse systems where $X_0$ is quasi-compact, then the lemma follows in general. Thus we may and do assume $X_0$ is quasi-compact.

Choose an affine scheme $U_0$ and a surjective étale morphism $U_0 \to X_0$. Set $U_ i = X_ i \times _{X_0} U_0$ and $U = X \times _{X_0} U_0$. Set $R_ i = U_ i \times _{X_ i} U_ i$ and $R = U \times _ X U$. Recall that $U = \mathop{\mathrm{lim}}\nolimits U_ i$ and $R = \mathop{\mathrm{lim}}\nolimits R_ i$, see proof of Lemma 69.4.1. Recall that $|X| = |U|/|R|$ and $|X_ i| = |U_ i|/|R_ i|$. By Limits, Lemma 32.4.6 we have $|U| = \mathop{\mathrm{lim}}\nolimits |U_ i|$ and $|R| = \mathop{\mathrm{lim}}\nolimits |R_ i|$.

Surjectivity of $|X| \to \mathop{\mathrm{lim}}\nolimits |X_ i|$. Let $(x_ i) \in \mathop{\mathrm{lim}}\nolimits |X_ i|$. Denote $S_ i \subset |U_ i|$ the inverse image of $x_ i$. This is a finite nonempty set by the definition of decent spaces (Decent Spaces, Definition 67.6.1). Hence $\mathop{\mathrm{lim}}\nolimits S_ i$ is nonempty, see Categories, Lemma 4.21.7. Let $(u_ i) \in \mathop{\mathrm{lim}}\nolimits S_ i \subset \mathop{\mathrm{lim}}\nolimits |U_ i|$. By the above this determines a point $u \in |U|$ which maps to an $x \in |X|$ mapping to the given element $(x_ i)$ of $\mathop{\mathrm{lim}}\nolimits |X_ i|$.

Injectivity of $|X| \to \mathop{\mathrm{lim}}\nolimits |X_ i|$. Suppose that $x, x' \in |X|$ map to the same point of $\mathop{\mathrm{lim}}\nolimits |X_ i|$. Choose lifts $u, u' \in |U|$ and denote $u_ i, u'_ i \in |U_ i|$ the images. For each $i$ let $T_ i \subset |R_ i|$ be the set of points mapping to $(u_ i, u'_ i) \in |U_ i| \times |U_ i|$. This is a finite set by the definition of decent spaces (Decent Spaces, Definition 67.6.1). Moreover $T_ i$ is nonempty as we've assumed that $x$ and $x'$ map to the same point of $X_ i$. Hence $\mathop{\mathrm{lim}}\nolimits T_ i$ is nonempty, see Categories, Lemma 4.21.7. As before let $r \in |R| = \mathop{\mathrm{lim}}\nolimits |R_ i|$ be a point corresponding to an element of $\mathop{\mathrm{lim}}\nolimits T_ i$. Then $r$ maps to $(u, u')$ in $|U| \times |U|$ by construction and we see that $x = x'$ in $|X|$ as desired.

Parenthetical statement: A quasi-separated algebraic space is decent, see Decent Spaces, Section 67.6 (the key observation to this is Properties of Spaces, Lemma 65.6.7). A locally separated algebraic space is decent by Decent Spaces, Lemma 67.15.2. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)