Lemma 71.2.9. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. If $U \to X$ is an étale morphism such that $\text{WeakAss}(\mathcal{F}) \subset \mathop{\mathrm{Im}}(|U| \to |X|)$, then $\Gamma (X, \mathcal{F}) \to \Gamma (U, \mathcal{F})$ is injective.

**Proof.**
Let $s \in \Gamma (X, \mathcal{F})$ be a section which restricts to zero on $U$. Let $\mathcal{F}' \subset \mathcal{F}$ be the image of the map $\mathcal{O}_ X \to \mathcal{F}$ defined by $s$. Then $\mathcal{F}'|_ U = 0$. This implies that $\text{WeakAss}(\mathcal{F}') \cap \mathop{\mathrm{Im}}(|U| \to |X|) = \emptyset $ (by the definition of weakly associated points). On the other hand, $\text{WeakAss}(\mathcal{F}') \subset \text{WeakAss}(\mathcal{F})$ by Lemma 71.2.4. We conclude $\text{WeakAss}(\mathcal{F}') = \emptyset $. Hence $\mathcal{F}' = 0$ by Lemma 71.2.5.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (2)

Comment #4071 by Matthieu Romagny on

Comment #4146 by Johan on